Ami 316 lf трансформатор



Определяем тип трансформатора по номеру.

Порой в загашниках попадаются трансформаторы и дроссели, на которых кроме, так называемого — децимального номера, ничего больше нет.
Часто на форумах задают вопросы с просьбой помочь в определении типа и пригодности подобных намоточных изделий для радиолюбительского применения.
В данной статье рассмотрим расшифровку подобных номеров на трансформаторах и дросселях.

Рисунок 1.
Маркировка на дросселе.

В 1961 году был выпущен документ «Система чертёжного хозяйства», состоящего из нескольких книг (Междуведомственных Нормалей) и согласно которому (часть IV Обозначение конструкторских документов Н0.000.005) на трансформаторы и дроссели при их производстве ставились кодовые номера, которые выглядели следующим образом — Х.ХХХ.ХХХ.
В начале номера могли стоять буквы (обычно и стояли). Что же означали эти номера? Давайте попробуем разобраться.

Рисунок 2.
Маркировка на трансформаторе.

Мы рассмотрим класс, в который входили трансформаторы и дроссели. Первая цифра 4 означала класс 4 — «Приборы, группы и комплекты», в который и входили намоточные изделия.
Далее идёт точка или пропуск и потом три цифры, первые две из которых определяют тип, а третья вид намоточного изделия. Следующие три цифры после точки (пропуска) — это номер разработки (изделия), он не регламентировался и каждое предприятие могло ставить свои номера на определённые изделия, поэтому здесь мы их рассматривать не будем, в этом нет никакого смысла. Для нас важны только первые четыре цифры.

Рисунок 3.
Маркировка на трансформаторе.

Так, что же означают эти цифры?
Смотрим первый рисунок на маркировку. ОФ4 751 028.
Первые три цифры по таблице 1 (475) означают тип, и что это изделие относится к индуктивностям, дросселям до 22 000 Гц (а это и есть дроссель), четвёртая цифра (1) означает, что этот дроссель рассчитан на ток от 0,5 до 1,0 ампера. Следующие три цифры — номер разработки изделия
Код на втором рисунке ОФ4702149 по таблице означает, что это трансформатор силовой однофазный до 50 Гц, мощностью до 200 ва и напряжением до 1 кв.
То же самое можно сказать и о маркировке на третьем рисунке.

Класс 4 — Приборы, группы и комплекты. Трансформаторы, дроссели, индуктивности и т.п.
Тип Вид
4.70 Трансформаторы силовые однофазные до 50 Гц.
[прод. см 4.74]
4.700 Накальные до 150 ва до 1 кв.
4.701 Накальные свыше 150 ва до 1 кв.
4.702 До 200 ва до 1 кв. [прод. см. 4.704]
4.703 Свыше 200 ва до 1 кв.[прод. см 4.705]
4.704 До 200 ва до 1 кв.[см 4.702]
4.705 Свыше 200 ва до 1 кв.[см 4.703]
4.706 Высоковольтные свыше 1 до 10 кв.
4.707 Высоковольтные свыше 10 кв.
4.708
4.709 Прочие
4.71 Трансформаторы силовые однофазные свыше 50 Гц.
[прод. см 4.74]
4.710 Накальные до 150 ва до 1 кв [прод. см 4.740] .
4.711 Накальные свыше 150 ва до 1 кв.
4.712 До 200 ва до 1 кв. [прод. см. 4.714]
4.713 Свыше 200 ва до 1 кв.[прод. см 4.715]
4.714 До 200 ва до 1 кв.[см 4.712, прод. см 4.743]
4.715 Свыше 200 ва до 1 кв.[см 4.713]
4.716 Высоковольтные свыше 1 до 10 кв.
4.717 Высоковольтные свыше 10 кв.
4.718
4.719 Прочие
4.72 Трансформаторы разные 4.720 Импульсные
4.721
4.722 Регулируемые (вариаки).
4.723 Автотрансформаторы до 50 Гц.
4.724 Силовые трёхфазные.
4.725 Силовые трёхфазные.
4.726 Потенциал-регуляторы.
4.727
4.728 Измерительные (тока, напряжения).
4.729
4.73 Трансформаторы разные 4.730 Звуковой частоты.
4.731 Звуковой частоты[прод. см. 4.746].
4.732 Линейные
4.733 Автотрансформаторы свыше 50 Гц.
4.734 Дифференциальные
4.735 Симметрирующие и согласовывающие.
4.736 Запоминающие.
4.737 Умножения частоты, преобразования числа фаз.
4.738
4.739 Прочие
4.74 Трансформаторы силовые однофазные и трансформаторы разные.
[см. 4.70; 4.71]
4.740 Накальные свыше 50 Гц до 150 ва до 1 кв[см. 4.710].
4.741
4.742
4.743 До 200 ва до 1 кв.[см 4.714]
4.744
4.745
4.746 Звуковой частоты [см. 4.731].
4.747 .
4.748
4.749
4.75 Индуктивности, дроссели до 22000 Гц 4.750 На ток до 0,5 а [прод. см. 4.753].
4.751 На ток от 0,5 до 1,0 а.
4.752 На ток свыше 1,0 а.
4.753 На ток до 0,5 а.[см 4.750]
4.754 Звуковой частоты.
4.755 Звуковой частоты.
4.756 Регулируемые.
4.757 Телефонные.
4.758 Дроссели насыщения.
4.759 Прочие.
4.76 Катушки (с обмотками) 4.760 Трансформаторов.
4.761
4.762
4.763
4.764 Дросселей.
4.765
4.766
4.767
4.768 Электромагнитов.
4.769 Прочие.
4.77 Трансформаторы, дроссели, индуктивности свыше 22000 Гц. 4.770 Трансформаторы высокой частоты [прод. см. 4.772].
4.771 Трансформаторы промежуточной частоты.
4.772 Трансформаторы высокой частоты [прод. см. 4.770].
4.773 Вариометры.
4.774
4.775 Индуктивности, дроссели ВЧ без сердечника.
4.776 Индуктивности, дроссели ВЧ без сердечника [прод. см. 4.784].
4.777 Индуктивности, дроссели с магнитодиэлектриком [прод. см. 4.780].
4.778 Индуктивности, дроссели с немагнитным сердечником.
4.779 Прочие
4.78 Трансформаторы, дроссели, индуктивности свыше 22000 Гц. 4.780 Индуктивности, дроссели ВЧ с магнитодиэлектриком [см. 4.777].
4.781 Индуктивности, дроссели ВЧ с магнитодиэлектриком.
4.782 Индуктивности, дроссели ВЧ с магнитодиэлектриком.
4.783
4.784 Индуктивности, дроссели ВЧ без сердечника [см. 4.776].
4.785
4.786
4.787
4.788
4.789
4.79 Разного назначения 4.790 Системы фокусирующие.
4.791 Системы отклоняющие, развёртывающие.
4.792 Системы фокусирующе-отклоняющие и сложные.
4.793
4.794 Трансформаторы и дроссели развёрток
4.795
4.796
4.797
4.798
4.799 Прочие.
Читайте также:  Как аккуратно согнуть трубу без трубогиба

Следует иметь в виду, что современная маркировка, или маркировка намоточных изделий более поздних выпусков, похожа на описанную выше (первая точка может стоять после 3х номеров), но расшифровка этих номеров по приведённой таблице, может не соответствовать действительности. Там используется другая кодировка.

Могут попадаться и такие трансформаторы с разной маркировкой на катушках, начинающейся с цифры «5».

Рисунок 4.
Маркировка на трансформаторе.

Что это может означать? А это следующий класс «5», к которому относятся Узлы.
То есть это составные части, вернее узлы намоточных изделий, в часности катушки, которые например один завод выпускал, а трансформаторы могли собираться из этих узлов (катушек) на другом заводе, или всё изготавливалось на одном заводе в разных цехах.
Маркировка незначительно отличается от четвёртого класса, но всё равно приведу для примера таблицу.

Конкретно для нашего трансформатора маркировка 5.760.023 (024) означает, судя по таблице, что он собран из двух разных катушек (с обмотками), которые предназначены для трансформаторов. Из катушки 023 и катушки 024. Они (катушки) скорее всего отличаются только вторичными обмотками, так как у подобных трансформаторов первичные обмотки должны быть одинаковыми.

Источник

Импульсные блоки питания — устройство и ремонт

Сервисный центр Комплэйс выполняет ремонт импульсных блоков питания в самых разных устройствах.

Схема импульсного блока питания

Импульсные блоки питания используются в 90% электронных устройств. Но для ремонта импульсных блоков питания нужно знать основные принципы схемотехники. Поэтому приведем схему типичного импульсного блока питания.

Работа импульсного блока питания

Первичная цепь импульсного блока питания

Первичная цепь схемы блока питания расположена до импульсного ферритового трансформатора.

На входе блока расположен предохранитель.

Затем стоит фильтр CLC. Катушка, кстати, используется для подавления синфазных помех. Вслед за фильтром располагается выпрямитель на основе диодного моста и электролитического конденсатора. Для защиты от коротких высоковольтных импульсов после предохранителя параллельно входному конденсатору устанавливают варистор. Сопротивление варистора резко падает при повышенном напряжении. Поэтому весь избыточный ток идет через него в предохранитель, который сгорает, выключая входную цепь.

Читайте также:  Как правильно раскрутить дрель

Защитный диод D0 нужен для того, чтобы предохранить схему блока питания, если выйдет из строя диодный мост. Диод не даст пройти отрицательному напряжению в основную схему. Потому, что откроется и сгорит предохранитель.

За диодом стоит варистор на 4-5 ом для сглаживания резких скачков потребления тока в момент включения. А также для первоначальной зарядки конденсатора C1.

Активные элементы первичной цепи следующие. Коммутационный транзистор Q1 и с ШИМ (широтно импульсный модулятор) контроллер. Транзистор преобразует постоянное выпрямленное напряжение 310В в переменное. Оно преобразуется трансформатором Т1 на вторичной обмотке в пониженное выходное.

И еще — для питания ШИМ-регулятора используется выпрямленное напряжение, снятое с дополнительной обмотки трансформатора.

Работа вторичной цепи импульсного блока питания

Во выходной цепи после трансформатора стоит либо диодный мост, либо 1 диод и CLC фильтр. Он состоит из электролитических конденсаторов и дросселя.

Для стабилизации выходного напряжения используется оптическая обратная связь. Она позволяет развязать выходное и входное напряжение гальванически. В качестве исполнительных элементов обратной связи используется оптопара OC1 и интегральный стабилизатор TL431. Если выходное напряжение после выпрямления превышает напряжение стабилизатора TL431 включается фотодиод. Он включает фототранзистор, управляющий драйвером ШИМ. Регулятор TL431 снижает скважность импульсов или вообще останавливается. Пока напряжение не снизится до порогового.

Ремонт импульсных блоков питания

Неисправности импульсных блоков питания, ремонт

Исходя из схемы импульсного блока питания перейдем к ее ремонту. Возможные неисправности:

  1. Если сгорел варистор и предохранитель на входе или VCR1, то ищем дальше. Потому, что они так просто не горят.
  2. Сгорел диодный мост. Обычно это микросхема. Если есть защитный диод, то и он обычно горит. Нужна их замена.
  3. Испорчен конденсатор C1 на 400В. Редко, но бывает. Часто его неисправность можно выявить по внешнему виду. Но не всегда. Иногда внешне исправный конденсатор оказывается плохим. Например, по внутреннему сопротивлению.
  4. Если сгорел переключающий транзистор, то выпаиваем и проверяем его. При неисправности требуется замена.
  5. Если не работает ШИМ регулятор, то меняем его.
  6. Замыкание, а также обрыв обмоток трансформатора. Шансы на починку минимальны.
  7. Неисправность оптопары — крайне редкий случай.
  8. Неисправность стабилизатора TL431. Для диагностики замеряем сопротивление.
  9. Если КЗ в конденсаторах на выходе блока питания, то выпаиваем и диагностируем тестером.
Читайте также:  Коэффициент загрузки подстанции с двумя трансформаторами

Примеры ремонта импульсных блоков питания

Например, рассмотрим ремонт импульсного блока питания на несколько напряжений.

Неисправность заключалась в в отсутствии на выходе блока выходных напряжений.

Например, в одном блоке питания оказались неисправны два конденсатора 1 и 2 в первичной цепи. Но они не были вздутыми.

На втором не работал ШИМ контроллер.

На вид все конденсаторы на снимке рабочие, но внутреннее сопротивление у них большое. Более того, внутреннее сопротивление ESR конденсатора 2 в кружке оказалось в несколько раз выше номинального. Этот конденсатор стоит в цепи обвязки ШИМ регулятора, поэтому регулятор не работал. Работоспособность блока питания восстановилась только после замены этого конденсатора. Потому что ШИМ заработал.

Ремонт компьютерных блоков питания

Пример ремонта блока питания компьютера. В ремонт поступил дорогой блок питания на 800 Вт. При его включении выбивало защитный автомат.

Выяснилось, что короткое замыкание вызывал сгоревший транзистор в первичной цепи питания. Цена ремонта составила 3000 руб.

Имеет смысл чинить только качественные дорогие компьютерные блоки питания. Потому что ремонт БП может оказаться дороже нового.

Цены на ремонт импульсных БП

Цены на ремонт импульсных блоков питания очень отличаются. Дело в том, что существует очень много электрических схем импульсных блоков питания. Особенно много отличий в схемах с PFC (Power Factor Correction, коэффициент коррекции мощности). ЗАС повышает КПД.

Но самое важное — есть ли схема на сгоревший блок питания. Если такая электрическая схема есть в доступе, то ремонт блока питания существенно упрощается.

Стоимость ремонта колеблется от 1000 рублей для простых блоков питания. Но достигает 10000 рублей для сложных дорогих БП. Цена определяется сложностью блока питания. А также сколько элементов в нем сгорело. Если все новые БП одинаковые, то все неисправности разные.

Например, в одном сложном блоке питания вылетело 10 элементов и 3 дорожки. Тем не менее его удалось восстановить, причем цена ремонта составила 8000 рублей. Кстати, сам прибор стоит порядка 1 000 000 рублей. Таких блоков питания в России не продают.

Не смогли починить БП? Обращайтесь в Комплэйс.

Устройство китайских зарядок для ноутбуков описано здесь.

Источник

Оцените статью
toolgir.ru
Adblock
detector