Блок управления сварочным полуавтоматом на микроконтроллере



Сварочный полуавтомат на Arduino своими руками.

Сегодня речь пойдет о том, как сделать сварочный полуавтомат на Arduino своими руками. Вернее, систему подачи проволоки для сварочного аппарата. Все необходимая информация выводится на дисплей LCD 1602. Настройка происходит с помощью энкодера. Управляет механизмом подачи – драйвер L298n. Давайте рассмотрим устройства поподробнее.

Объект автоматизации.

Перед разработкой нужно определиться с механической частью, чем будем подавать проволоку. В этом нам поможет механизм подачи SSJ-29А со следующими характеристиками:

  • Питание: DC 24 В.
  • Скорость подачи проволоки: 2-15 м/мин.
  • Номинальный ток мотора: 2А.
  • Номинальная мощность мотора: 25 Вт.
  • Размер ролика (OD * ID * H): 30*10*10 мм.

По техническому заданию нужно настроить скорость подачи от 1- 8 м/мин. Не смотря на то, что скорость подачи заявлена от 2 м/мин. Механизм отлично работает при скорости 1 м/мин.

Определение скорости подачи проволоки сварочного автомата.

Для определения скорости подачи проволоки написал небольшой скетч, который позволил замерить нужные параметры. На основе которых построил график и установил значения в прошивке. Электронику для тестов использовал следующую:

Меню для сварочного полуавтомата на Ардуино и дисплее LCD 1602.

Информация на дисплее LCD 1602 выводиться на русском языке. На главном экране отображаются основные параметры.

На первой строчке выводится скорость подачи проволоки в м/мин. Рядом со скоростью с правой стороны отображается информация о режиме работы: перемотка назад, перемотка вперёд, индикация на экране в виде стрелки в соответствующую сторону. Большая стрелка означает, что работа осуществляется в режиме подачи проволоки. Режимы меняются с помощью трех позиционного переключателя.

Внизу экрана отображается режим подачи проволоки. Первое значение указывает, сколько секунд будет пауза до включения двигателя подачи, второе значение показывает, сколько времени будет производиться подача. Третий параметр означает, сколько времени будет задержка между подачей проволоки. Последнее значение, со стрелкой налево, означает, на сколько миллиметров будет возвышаться проволока при задержке подачи.

При нажатии на кнопку экодера происходит переключение параметров настройки.

Первый параметр — это настройки скорости подачи проволоки от 1 до 8 м/мин.

Второй параметр отвечает за время подачи проволоки. От 0,5 до 5 сек.

Третий параметр – время прерывания в цикле. От 0 до 5 сек.

Четвертый – позволяет реализовать возврат проволоки. От 0 до 10 мм.

При изменении параметров, если ничего не делать в течение 10 секунд, будет произведено перенаправление на основной экран.

Электроника сварочного полуавтомата на Arduino

Для тестирования использовал следующую электронику:

Алгоритм работы подачи сварочной проволоки.

Тумблер включает перемотку проволоки и включает рабочий режим.

Энкодер производит настройку режима роботы подачи проволоки.

При нажатии кнопки, без всякой задержки, включается реле управления инвертором сварочного аппарата. После того как прошло время задержки, включается двигатель подачи проволоки, на скорости, которую мы настроили. Спустя время подачи, происходит пауза и возврат проволоки на указанное значение. Цикл подачи и прерывания повторяется, пока мы не отпустим кнопку.

Также возможны другие режимы работы:

  • Без предварительной задержки, при нажатии кнопки, подача проволоки начнется сразу.
  • Время прерывания установлено в ноль, при нажатии на кнопку подача проволоки будет происходить без задержки и возврата.
  • Также можно настроить и другие варианты работы: без возврата проволоки и с разными интервалами времени.

Исходные материалы.

Данный проект сделал под заказ, поэтому исходных материалов выложить не могу. Отдельная благодарность заказчику за то, что разрешил рассказать о проекте. Так как в 95 процентах случаев заказчики против огласки информации о проекте.

Понравился проект Сварочный полуавтомат на Arduino своими руками? Не забудь поделиться с друзьями в соц. сетях.

А также подписаться на наш канал на YouTube, вступить в группу Вконтакте .

Спасибо за внимание!

Технологии начинаются с простого!

Источник

Профессиональный контроллер для сварочного полуавтомата

Хочу представить вам свою новую разработку. Это контроллер профессионального назначения для полуавтомата, далее (ПА).

Данное устройство реализовано на микроконтроллере Atmega16, работает он на тактовой частоте 4 МГц от внешнего кварцевого резонатора.

Можно конечно затактировать и от встроенного генератора на 4 МГц, но данный способ имеет существенные недостатки:
1) «Уплывание» частоты при изменении температуры окружающей среды.
2) Возможный сбой программы при внешних помехах.
Второе случается крайне редко на практике. А при хорошем проектировании печатной платы, вовсе не случается.
Первый недостаток очень серьезный из-за того, что мы используем фазоимпульсный метод регулирования сварочного тока.
От «уплывания» тактовой частоты у нас будут уплывать установленные значения тока в ту или иную сторону.

Читайте также:  Инструкция по охране труда при работе с газовой сваркой

Данное устройство имеет следующие возможности:
1) Плавную регулировку тока с запоминанием значения
2) Плавную регулировку скорости подачи проволоки с запоминанием значения
3) Эконом режим. Режим экономии газа.
4) Настройка режима работы пусковой кнопки на рукаве.
а) нормальный режим работы.
б) триггерный режим работы
в) таймерный режим работы.
г) импульсный режим работы.
В нормальном режиме, мы нажали кнопку — варим, отжали — не варим.
В триггерном режиме мы нажали и отжали кнопку — варим, повторно нажали и отжали — не варим
В таймерном режиме мы варим как и в обычном режиме, только режим сварки отключается автоматически хоть и нажата кнопка на рукаве по истечению времени. Для продолжения работы необходимо отжать кнопку и повторно нажать.
В импульсном режиме мы варим как бы рывками. В меню задается как пауза, так и импульс сварки, в довольно широких пределах. Этот режим идеально подходит для работ, где необходима точечная сварка.
5) Настройка минимального предела тока
6) Настройка максимального предела тока
7) Настройка минимального предела скорости проволоки
8) Настройка максимального предела скорости проволоки
9) Настройка предварительной подачи газа (ПРЕД)
10) Настройка последующей подачи газа (ПОС)
11) Настройка количества реле для грубого регулирования тока путем отводов первичной обмотки. Минимум 1шт. максимум 10шт. реле.
12) Грубая регулировка тока переключением обмоток трансформатора с меню с запоминанием уровня тока.

В общем с возможностями разобрались. Теперь расскажу немного теории.

Принцип регулирования тока заключается в подаче управляющего импульса на тиристоры после перехода через ноль сетевого напряжения.

Чем выше установленная выходная мощность в меню, тем раньше будет подан импульс управления на тиристоры после перехода через ноль.

Стандартную схему диодно-тиристорного моста можно посмотреть в моей предыдущей статье
Принцип регулирования скорости подачи проволоки значительно проще, чем регулирование тока. Применен метод широтно-импульсной модуляции далее (ШИМ).

Навигация по меню и настройка
1) Регулировка тока + регулировка проволоки
2) Эко режим
3) Режим переключения обмоток
4) Настройка режима работы «живой кнопки»
5) Настройка минимального значения тока
6) Настройка максимального значения тока
7) Настройка минимального значения подачи проволоки
8) Настройка максимального значения подачи проволоки
9) Настройка пред. газа
10) Настройка пос. газа
11) Настройка количества реле обмоток
12) Настройка таймерного режима (установка времени работы при нажатой кнопке)
Одно значение = 75мс. То есть значение 10 = 750мс.
13) Настройка импульсного режима работы
Значение 10d это у нас промежуток когда нет тока
Значение 10p это у нас промежуток когда есть ток
Настраивается парами кнопок +/- и + prov /- prov
Кнопкой MENU мы перемещаемся по меню
Кнопкой RETURN выходим в первое (главное) меню
Кнопками +/- и +prov/-prov мы устанавливаем значение.

Для того, чтобы заработало устройство его необходимо правильно собрать и прошить контроллер (МК).
Для прошивки МК нам понадобится программатор. Схемы программаторов можно посмотреть здесь.

Фьюзы при прошивке нужно выставить так: CKSEL 3..0 0b1111

К статье прилагаю файл [svarka4.rar] симуляции для протеус, несколько прошивок (одна с пониженной частотой ШИМ, вторая с повышенной частотой ШИМ).

Имеется коммерческая версия прошивки
1) изменен алгоритм меню.
2) улучшено быстродействие.
3) добавлена формула расчета скорости подачи проволоки от значения тока (отключаемая по желанию).
4) добавлено несколько режимов экономии газа.

Обновления 28.01.2014:
— новая версия прошивки V1.1;
— печатная плата в DIP Trace. Автор: Ожух Владимир из Мишевоград-Волынский, Украина. Плата протестирована им-же.

В новой версии прошивки исправлено:
— подача проволоки теперь работает на максимуме;
— вывод торможения имеет нормальную нагрузочную способность.

Внимание! Это free (бесплатная) версия. Не имеет ограничений! Отличается от 3.0 (Полной версии) — наличием формулы и доработанным и улучшенным меню.

Источник

Самопал

Все, что вы можете сделать сами!

Сварочный полуавтомат под управлением микроконтроллера

Сварочный полуавтомат под управлением микроконтроллера

Сообщение Artos5 » 01 дек 2013, 18:36

Эта ветка предназначена для обсуждения моих разработок «управлялок» для сварочников. У кого есть вопросы по сборке/наладке — пишем сюда

Вот ссылки на статьи:
http://cxem.net/house/1-344.php Относительно новый проект. На основе него сейчас выпускаются заводские печатные платы.

Читайте также:  Блок питания трещит трансформатор

http://cxem.net/house/1-269.php довольно актуальный проект на данный момент.
http://cxem.net/house/1-279.php усложненная версия предыдущего проекта (менее активно развивается).

Схема зуммера:
http://forum.cxem.ne. ttach_id=190655

Новая разработка контроллера , преимущества и функциональные возможности:

— электронное торможение
— МК в планарном корпусе
— измерение и индикация напряжения на выходе
— сенсорное управление
— оптическая развязка управляющих узлов
— три режима работы полуавтомата
— высокая надёжность контроллера
— низкая выделяемая мощность силовых элементов (работают в ключевом режиме).
— регулировка подачи проволоки в диапазоне от 0% до 100% . Шаг 1%
— программирование диапазонов подачи проволоки.
— программирование задержки включения подачи проволоки
— программирование режима работы пускателя/симистора при старте в импульсном режиме
— программирование длительности импульса/паузы в импульсном режиме.
— Можно применить семисегментный индикатор любого типа, маломощный. Хоть ОК , хоть ОА , в меню можно выставить используемый тип LED.
Также можно применить индикатор , хоть на 3 разряда хоть на 4 разряда, на 3 разряда индикация будет менее информативная.

Все керамические конденсаторы использовать только NP0!
Электролитические конденсаторы использовать с низким импедансом! 105 град.

PS: В скором времени загружу видео работы устройства.

Источник

Полуавтомат из сварочного инвертора своими руками: схема, фото, видео

Сварочный полуавтомат – это функциональное устройство, которое можно приобрести готовым или сделать из инвертора своими руками. Следует отметить, что изготовление полуавтоматического аппарата из инверторного устройства – задача не из простых, но при желании ее можно решить. Тем, кто поставит перед собой такую цель, следует хорошо изучить принцип работы полуавтомата, посмотреть тематические фото и видео, подготовить все необходимое оборудование и комплектующие.

Схема полуавтоматической сварки в среде защитного газа

Что потребуется для переделки инвертора в полуавтомат

Чтобы переделать инвертор, изготовив из него функциональный сварочный полуавтомат, вы должны найти следующее оборудование и дополнительные комплектующие:

  • инверторный аппарат, способный формировать сварочный ток силой 150 А;
  • механизм, который будет отвечать за подачу сварочной проволоки;
  • основной рабочий элемент – горелку;
  • шланг, через который будет подаваться сварочная проволока;
  • шланг для подачи защитного газа в зону выполнения сварки;
  • катушку со сварочной проволокой (такую катушку необходимо будет подвергнуть некоторым переделкам);
  • электронный блок, управляющий работой вашего самодельного полуавтомата.

Электрическая схема самодельного полуавтомата

Отдельное внимание надо посвятить переделке подающего устройства, за счет которого в зону сварки подается сварочная проволока, передвигающаяся по гибкому шлангу. Чтобы сварной шов получался качественным, надежным и аккуратным, скорость подачи проволоки по гибкому шлангу должна соответствовать скорости ее расплавления.

Поскольку при сварке с использованием полуавтомата может применяться проволока из разных материалов и различного диаметра, скорость ее подачи должна регулироваться. Именно такую функцию – регулирование скорости подачи сварочной проволоки – как раз и должен выполнять подающий механизм полуавтомата.

Внешний вид самодельного полуавтоматического сварочника

Самыми распространенными диаметрами проволоки, применяемой при сварке полуавтоматом, являются 0,8; 1; 1,2 и 1,6 мм. Проволоку перед выполнением сварки наматывают на специальные катушки, которые являются приставками полуавтоматических аппаратов, закрепляемыми на них при помощи несложных конструктивных элементов. В процессе выполнения сварки проволока подается автоматически, что значительно сокращает время, затрачиваемое на такую технологическую операцию, упрощает ее и делает более эффективной.

Основным элементом электронной схемы блока управления полуавтомата является микроконтроллер, который отвечает за регулирование и стабилизацию сварочного тока. Именно от данного элемента электронной схемы сварочного полуавтомата зависят параметры рабочего тока и возможность их регулирования.

Как переделать инверторный трансформатор

Для того чтобы инвертор можно было использовать для самодельного полуавтомата, его трансформатор необходимо подвергнуть некоторым переделкам. Выполнить такую переделку своими руками несложно, надо только придерживаться определенных правил.

Чтобы привести характеристики инверторного трансформатора в соответствие с теми, которые необходимы для полуавтомата, следует обмотать его медной полосой, на которую нанесена обмотка из термобумаги. Нужно иметь в виду, что для этих целей нельзя использовать обычный толстый провод, который будет сильно нагреваться.

Переделанный трансформатор инвертора

Вторичную обмотку инверторного трансформатора также необходимо переделать. Для этого надо сделать следующее: намотать обмотку, состоящую из трех слоев жести, каждый из которых необходимо изолировать при помощи фторопластовой ленты; концы уже имеющейся обмотки и сделанной своими руками спаять между собой, что позволит повысить проводимость токов.

Конструктивная схема инвертора, используемого для его включения в сварочный полуавтомат, должна обязательно предусматривать наличие вентилятора, который необходим для эффективного охлаждения устройства.

Читайте также:  Кровельный саморез по металлу для сэндвич панелей

Настройка инвертора, используемого для полуавтоматической сварки

Если вы решили сделать своими руками сварочный полуавтомат, используя для этого инвертор, необходимо предварительно обесточить данное оборудование. Чтобы такое устройство не перегревалось, следует разместить его выпрямители (входной и выходной) и силовые ключи на радиаторах.

Силовые диоды на дополнительных радиаторах

Кроме того, в той части корпуса инвертора, где располагается радиатор, нагревающийся сильнее, лучше всего смонтировать термодатчик, который будет отвечать за отключение аппарата в том случае, если он перегреется.

После того как все вышеперечисленные процедуры выполнены, можно соединить силовую часть устройства с его блоком управления и подключить его к электрической сети. Когда индикатор подключения к сети загорится, к выходам инвертора следует подключить осциллограф. С помощью этого прибора надо найти электрические импульсы частотой 40–50 кГц. Время между формированием таких импульсов должно составлять 1,5 мкс, что регулируется изменением величины напряжения, поступающего на вход устройства.

Осциллограмма сварочного напряжения и тока: слева на обратной полярности, справа – на прямой

Необходимо также проверить, чтобы импульсы, отражающиеся на экране осциллографа, имели прямоугольную форму, а их фронт составлял не более 500 нс. Если все проверяемые параметры соответствуют требуемым значениям, то можно подключать инвертор к электрической сети. Ток, поступающий от выхода полуавтомата, должен иметь силу не менее 120 А. Если величина силы тока меньше, это может означать то, что в провода оборудования подается напряжение, величина которого не превышает 100 В. При возникновении такой ситуации необходимо сделать следующее: протестировать оборудование путем изменения силы тока (при этом надо постоянно контролировать напряжение на конденсаторе). Кроме того, следует постоянно контролировать температуру внутри устройства.

После того как полуавтомат протестирован, необходимо проверить его под нагрузкой. Чтобы сделать такую проверку, к сварочным проводам подключают реостат, сопротивление которого составляет не меньше 0,5 Ом. Такой реостат должен выдерживать ток силой 60 А. Сила тока, который в такой ситуации поступает на сварочную горелку, контролируется при помощи амперметра. Если сила тока при использовании нагрузочного реостата не соответствует требуемым параметрам, то величину сопротивления данного устройства подбирают эмпирическим путем.

Как использовать сварочный инвертор

После запуска полуавтомата, который вы собрали своими руками, на индикаторе инвертора должно высветиться значение силы тока, равное 120 А. Если все сделать правильно, то так оно и произойдет. Однако на индикаторе инвертора могут высветиться восьмерки. Причиной этого чаще всего является недостаточное напряжение в сварочных проводах. Лучше сразу найти причину такой неисправности и оперативно устранить ее.

Если же все сделано правильно, то индикатор корректно покажет силу сварочного тока, регулируемого при помощи специальных кнопок. Интервал регулировки рабочего тока, который обеспечивают сварочные инверторы, находится в пределах 20–160 А.

Ориентировочные режимы полуавтоматической сварки стыковых швов

Как контролировать правильность работы оборудования

Чтобы сварочный полуавтомат, который вы собрали своими руками, служил вам длительное время, лучше постоянно контролировать температурный режим работы инвертора. Для осуществления такого контроля необходимо нажать одновременно две кнопки, после чего температура самого горячего радиатора инвертора будет выводиться на индикатор. Нормальной рабочей температурой считается та, значение которой не превышает 75 градусов Цельсия.

Если данное значение будет превышено, то, кроме информации, выводимой на индикатор, инвертор начнет издавать прерывистый звуковой сигнал, на что следует сразу же обратить внимание. В этом случае (а также при поломке или замыкании термодатчика) электронная схема устройства автоматически снизит рабочий ток до значения 20А, а звуковой сигнал будет издаваться до тех пор, пока оборудование не придет в норму. Кроме того, о неисправности оборудования, сделанного своими руками, может свидетельствовать код ошибки (Err), высвечиваемый на индикаторе инвертора.

Настройка режима сварки на инверторе «Ресанта»

В каких случаях используется сварочный полуавтомат

Практика показывает, что полуавтомат лучше использовать в тех случаях, когда требуется получить точные и аккуратные соединения деталей, изготовленных из сталей. При помощи такого оборудования, которое при желании можно изготовить своими руками, выполняют сварные соединения тонкого металла, что очень актуально при ремонте кузова автотранспортного средства.

Научиться работать на таком аппарате тоже несложно: в этом помогут уроки, взятые у квалифицированных специалистов, или обучающее видео.

Источник

Оцените статью
toolgir.ru
Adblock
detector