Особенности технологии и виды наплавки металла
Сущность метода наплавки металла, особенности технологии и области применения. Разновидности наплавки: вибродуговая, газопламенная, плазменная, лазерная, индукционная. Классификация и основные виды оборудования.
Наплавка металла применяется для восстановления геометрии изношенных деталей машин и механизмов, формирования упрочняющих слоев металла на поверхности изделий и создания биметаллических структур.
По своей сути наплавка — это один из видов сварочных технологий, т. к. она основана на тех же физических и технологических принципах, что и традиционные виды сварки.
Для восстановления и защиты поверхностей деталей с помощью слоя расплавленного металла используют различные способы наплавки, отличающиеся друг от друга методами плавления и составами сварочной среды: электродуговые, газопламенные, плазменные, лазерные, индукционные и пр.
С помощью этой технологии можно наплавлять на рабочие плоскости стальных конструкций металлы различного химического состава, в том числе медь, бронзу, чугун, а также никелевые, кобальтовые и хромовые сплавы.
Особенности технологии и процесса наплавки
Технология наплавки позволяет добиться не только надежного сцепления наносимого металла с основой, но и получить требуемые физические и химические характеристики наплавленного слоя.
Первое достигается качественной подготовкой базового изделия и точным соблюдением технологических режимов, а второе — правильным подбором сварочных материалов.
Сущность наплавки состоит в равномерном нанесении узких полос расплавленного металла на поверхность детали таким образом, чтобы они соединились в сплошной металлический слой заданной толщины. При нанесении защитных покрытий он может составлять десятые доли миллиметра, а при восстановлении изношенных деталей — до десяти миллиметров.
В последнем случае должна быть обеспечена толщина припуска, достаточная для механической обработки детали (обточки, расточки или фрезеровки) до требуемого размера. Перед механообработкой наплавленный слой, как правило, отжигают, а после подвергают закалке с отпуском.
Виды наплавки металла
Кроме того, разные способы наплавки имеют различные скорости обработки и отличаются расходом сварочных материалов на единицу наплавленного металла. Каждый из них характеризуется собственным соотношением качества с производственными и экономическими показателями.
При этом в условиях реального производства наплавка деталей может выполняться не самым удачным способом. К примеру, многие предприятия не располагают оборудованием для электрошлакового наплавления, которое кратно экономит электроэнергию и наплавочные порошки, и применяют для тех же целей электродуговые методы.
Большинство наплавочных технологий ориентированы на работу с изделиями из стали, в том числе с нанесением на нее покрытий из цветных металлов. Как правило, среди них выделяются следующие виды:
- электродуговая;
- вибродуговая;
- газопламенная;
- плазменная;
- лазерная;
- индукционная;
- электрошлаковая;
- электроискровая.
Электродуговая наплавка
Чаще всего для наплавления металла применяют традиционное электродуговое оборудование. При ручной дуговой наплавке это стандартные выпрямители и инверторы постоянного тока, подключенные плюсом на электрод, а минусом — на деталь.
Такая схема включения используется для снижения глубины проплавления и общего нагрева изделия. Вручную металлы наплавляют как штучными обмазанными электродами, так и с помощью аппаратов с нерасходуемыми электродами и полуавтоматов с защитной средой из газа.
Ручная электродуговая наплавка угольными электродами с использованием порошковых смесей применяется для создания упрочняющих поверхностных слоев. В этом случае для обеспечения устойчивого плавления металла в присадочном порошке применяют включение с прямой полярностью (плюс на детали), повышающее нагрев поверхностного слоя изделия.
Такие установки имеют высокую производительность и обеспечивают высокое качество наплавленной поверхности. На видео ниже показано восстановление слоя металла в посадочном отверстии детали горной техники в автоматическом режиме.
Основному процессу предшествует зачистка металла с помощью прямошлифовальной машинки и разогрев места наплавления газовой горелкой. В качестве присадочного материала используется наплавочная проволока с омеднением.
Вибродуговая наплавка с применением проволоки
Эта технология представляет собой прерывистый сварочный процесс, во время которого электрод совершает колебательные движения в осевом направлении с частотой до ста герц и амплитудой от 0.3 до 3 мм.
В результате таких колебаний время существования дуги составляет около одной пятой от времени всего рабочего цикла и на поверхность переносится малое количество металла. Поэтому глубина провара получается небольшой, а тепловое воздействие на основную деталь — минимальным.
Вибродуговое наплавление выполняют с помощью полуавтоматов, оснащенных специальными электромеханическими устройствами прерывистой подачи, при этом используется проволока для наплавки диаметром 1.6÷2 мм.
Процесс наплавления осуществляется в защитной среде из газа, водных растворов или пены.
Газопламенная наплавка
Газопламенная наплавка считается самым простым и доступным способом наплавления металла, при котором источником тепла служит пламя горящего ацетилена или пропан-бутановой смеси.
В качестве присадочного материала обычно применяется сварочная проволока или прутки, которые подаются в зону сварки ручным или механизированным способом, а для флюсов чаще всего используют смеси на основе буры и борной кислоты.
Детали небольшого размера наплавляют без предварительного разогрева, а крупные перед наплавкой необходимо нагревать до температуры не менее 500 ºC.
Кроме проволочных и прутковых присадок, при газопламенном наплавлении также используют порошковые, которые направляются в газовую струю из специального накопителя, плавятся в потоке пламени и в виде мелких капель металла оседают на поверхности детали.
Плазменная наплавка
При плазменной наплавке применяют традиционные присадочные материалы, в том числе и гранулированные смеси, которые подают в рабочую зону механизированным способом.
Этот вид наплавочной технологии характеризуется небольшой глубиной проплавления основной детали в сочетании с качественной структурой наплавленного слоя металла.
Электрошлаковая наплавка
Электрошлаковая наплавка — это термический процесс, при котором источником нагрева гранулированной присадочной смеси, наносимой на поверхность детали, является шлаковая ванна.
Такое устройство представляет собой небольшую емкость с кристаллизатором, перемещаемую вдоль поверхности базовой детали. Сверху в нее опускается плавящийся электрод или подается гранулированная присадка, при этом плавление металла происходит под слоем шлака и флюса, защищающего зону наплавления от нежелательного воздействия атмосферных газов.
Вертикальное расположение шлаковой ванны способствует всплыванию пузырьков газа и частиц шлака, что способствует уменьшению количества пор и твердых включений в наплавленном металле.
Кроме того, шлаковый слой защищает от разбрызгивания металла и сохраняет тепло рабочей зоны, поэтому эта технология характеризуется пониженным энергопотреблением. Одними из немногих ее недостатков являются повышенная сложность технологического процесса и невозможность работы с деталями малого размера и сложной конфигурации.
Лазерная наплавка
Основным элементом лазерных установок является специальная головка с соплом, в котором образуется нагретый лазером поток газа, и порошковым инжектором, впрыскивающим в этот поток присадочный порошок.
По сравнению с другими видами наплавочных технологий лазерная наплавка характеризуется высокой точностью и стабильностью технологических режимов.
Индукционная наплавка
Для этого на участок детали, предназначенный к наплавлению металлом, вначале наносится слой присадочного материала с флюсом. Затем над ним на небольшом расстоянии размещается индуктор, представляющий собой несколько витков медной трубки или шинки, на которую подается высокочастотное напряжение.
Глубина проплавления металла базовой детали зависит от частоты тока индуктора: чем выше частота, тем на меньшую глубину проникают вихревые токи. Этот метод наплавления имеет одну из самых высоких производительностей и обеспечивает минимальный нагрев металла изделия.
Электроискровая наплавка
Электроискровая наплавка — это одна из разновидностей электроэрозионной обработки, основанной на воздействии кратковременных электрических разрядов на поверхность металлического изделия.
Основные элементы электроискровой установки — это электромагнитный осциллятор и электрод, из которого при искровых разрядах вырываются частицы металла. Поскольку ионы металлов обладают положительным зарядом, электрод подключается к плюсу, а деталь — к минусу.
С помощью электроискрового метода наносят покрытия толщиной от нескольких микрон до 0.5 мм. При этом наплавленный металл получается плотным и мелкопористым, что способствует хорошему удержанию масла на поверхностях трения.
Одно из главных достоинств этой технологии — практически полное отсутствие нагрева обрабатываемой поверхности, что позволяет избежать деформации изделия и изменения структуры металла.
Применяемое оборудование
В качестве универсального оборудования для наплавки нередко используют сварочные устройства, которые при необходимости дополняют специальной оснасткой и приспособлениями.
Специализированное наплавочное оборудование обычно классифицируют по форме наплавляемых поверхностей: для плоских деталей, для тел вращения и для сложных профилей.
Присадочные материалы в таких установках наносят не только традиционными способами (проволока, прутки, сопловое распыление), но и с применением специальных технологий: спиральная укладка ленты, центробежное распределение присадочного материала и пр.
Кроме того, любая наплавочная установка для массивных деталей оснащается устройством предварительного прогрева изделия до температуры +500…+700 ºС.
В продаже можно встретить малогабаритные установки электроискровой наплавки для домашнего применения, в аннотации к которым указывается, что с помощью этих устройств можно наплавлять металл толщиной до нескольких миллиметров.
Однако известно, что за один проход данная технология позволяет нарастить слой менее чем на десятую долю миллиметра. Как же достигается такая толщина и какого качества получается металл? Если кто-нибудь знает ответ на этот вопрос, поделитесь, пожалуйста, информацией в комментариях.
7.3. Сварка и наплавка под слоем флюса
Сущность процесса сварки и наплавки. Сварка(наплавка)под слоем флюса представляет собой разновидность электродуговой сварки, при которой дуга горит под слоем сварочного флюса, обеспечивающего защиту сварочной ванны от воздуха. Наряду •с защитными функциями флюс стабилизирует горение дуги, обеспечивает раскисление, легирование и рафинирование расплавленного сплава сварочной ванны.
Схема процесса наплавки под слоем флюса приведена на рис. 7.5. Восстанавливаемая деталь вращается в процессе наплавки с определенной скоростью. Электродная проволока автоматически подается в зону сварки. Дуга горит между концом электрода и восстанавливаемой поверхностью изделия под слоем флюса, который непрерывно подается из бункера. Под действием теплоты, выделяемой сварочной дугой, плавятся электродная проволока и основной металл, а также часть флюса, попавшего в зону горения дуги. В зоне горения дуги образуется полость, заполненная парами металла, флюса и газами. Их давление поддерживает флюсовый свод, образующийся над сварочной ванной. Под влиянием давления дуги жидкий металл оттесняется в сторону, противоположную направлению сварки, образуя сварочную ванну. Расплавленный флюс в результате значительно меньшей плотности всплывает на поверхность расплавленного металла шва и покрывает его плотным слоем.
Оболочка из расплавленного флюса предохраняет металл наплавки и околошовной зоны от кислорода и азота воздуха и, кроме того, препятствует разбрызгиванию жидкого металла. Благодаря тому, что расплавленный флюс обладает низкой теплопроводностью, замедляется процесс охлаждения наплавленного металла. Это облегчает всплытие на поверхность ванны шлаковых включений и растворенных в металле газов, что резко повышает качество наплавленного слоя сплава.
К, достоинствам сварки (наплавки) подслоем флюса относится: высокая производительность процесса, благодаря применению больших токов, большой глубины проплавления, а также почти полного отсутствия потерь металла на угар и разбрызгивание; возможность автоматизации процесса; высокое качество наплавленного металла в результате надежной защиты флюсом сварочной ванны; улучшение условий труда сварщика.
К недостаткам этого процесса сварки следует отнести: значительный нагрев детали; невозможность наплавки деталей диаметром менее 40 мм по причине стекания расплавленных наплавляемого металла и флюса с поверхности восстанавливаемой детали; необходимость в отдельных случаях повторной термической обработки детали.
Наплавку цилиндрических поверхностей деталей выполняют, как правило, по винтовой линии с перекрытием предыдущего валика последующим на 1/2 — 1/З ширины. Для предотвращения стекания расплавленных флюса и металла с восстанавливаемой поверхности наплавку ведут со смещением А электрода с зенита в сторону, обратную направлению вращения детали (см. рис. 7.5). Смещение электродной проволоки зависит в основном от диаметра наплавляемой детали и определяется опытным путем. Для деталей диаметром 50— 150 мм смешение электрода лежит в пределах 3 — 8 мм.
Рис. 7.5. Схема наплавки под слоем флюса:а — поперечный разрез; б — продольный разрез; 1—ванна расплавленного металла;2— расплавленный флюс;3 — электродная проволока;4 — наплавленный слой металла;5 — деталь; 6 — шлаковая корка;А — смешение электродной проволоки с зенита
При сварке под слоем флюса производительность процесса по машинному времени повышается в 6 — 12 раз по сравнению с ручной дуговой сваркой. Это достигается за счет использования больших плотностей тока в электродной проволоке (табл. 7.2). Такое повышение абсолютного значения тока и его плотности в электроде возможно благодаря наличию
Таблица 7.2.Сила и плотность тока я электроде при ручной дуговой сварке и сварке под слоен флюса
плотного слоя флюса вокруг зоны сварки, что предотвращает выдувание жидкого металла шва из сварочной ванны и сводит потери на угар и разбрызгивание до 1—3 %. Коэффициент наплавки при сварке под флюсом составляет 14—18 г/А*ч против 8— 12г/А-ч при сварке электродами.
Производительность сварки определяется массой металла, наплавляемого в единицу времени в граммах в час
где kH— коэффициент наплавки, г/А*ч;IСВ— сила сварочного тока, А.
Производительность наплавки под флюсом одним электродом составляет 9 — 15 кг/ч, а лентой 5 — 30 кг/ч.
Сварочные флюсы и электродные проволоки. Сварочным флюсом (ГОСТ 9087 — 81) называется неметаллический материал, расплав которого необходим для сварки и улучшения качества шва.
К флюсам для автоматической и полуавтоматической сварки предъявляют ряд следующих требований:
обеспечение стабильности горения дуги в процессе сварки;
получение заданного химического состава наплавленного металла;
обеспечение требуемого формирования металла;
получение швов без трещин и с минимальным (допустимым) числом шлаковых включений и пористостью;
обеспечение легкой отделяемости шлаковой корки от поверхности наплавленного металла.
Решение этих задач связано с составом свариваемого материала и используемой электродной проволоки. Поэтому используемые для наплавки флюсы весьма разнообразны.
Химический состав наплавленного металла формируется в результате расплавления основного и электродного материалов, а также зависит от степени защиты от воздуха. Степень защиты от воздуха определяется как образующимся в результате горения дуги шлаковым куполом над реакционной зоной, так и высотой слоя твердых частиц флюса над этой зоной. Высота слоя насыпаемого на место сварки флюса с определенным гранулометрическим составом частиц зависит от режимов сварки. Для наиболее распространенных флюсов, применяемых при сварке (наплавке) конструкционных малоуглеродистых и малолегированных сталей, которые широко используются в автомобильном производстве, рекомендации по количеству флюса, насыпаемого на место сварки, приведены в табл. 7.3.
Таблица 7,3. Высота слоя флюса и грануляции частиц для сварки на различных режимах
Флюсы классифицируют по следующим основным признакам.
флюсы общего назначения применяют для сварки и наплавки углеродистых и низколегированных сталей; флюсы специального назначения применяют для специальных способов сварки, таких как электрошлаковая сварка, сварка легированных сталей и т. д.
2. Способу изготовления:
плавленые, т. е. получаемые сплавлением шихты в электрических или пламенных печах, и неплавленые — т. е. изготовленные без расплавления шихты. К неплавленым относятся флюсы, изготовленные измельчением и смешиванием отдельных компонентов, а также керамические флюсы, которые получают смешиванием порошкообразных шлакообразующих, легирующих, раскисляющих и других компонентов.
3. Химическому составу: оксидные флюсы, состоящие из окислов металлов и фтористых соединений, применяемые для сварки и наплавки углеродистых и низколегированных сталей; солевые флюсы, состоящие из фтористых и хлористых солей, применяемые для сварки активных металлов; солеоксидные флюсы, применяемые при сварке и наплавке высоколегированных сталей.
4. Химическому составу шлакообразующей части:
кислые флюсы, содержащие кислые окислы SiO2иTiO2; нейтральные флюсы, содержащие в основном фториды и хлориды; основные флюсы, содержащие окислы основного характера, такие как СаО, МgО иFеО.
Таблица 7.4. Некоторые флюсы, применяемые при сварке углеродистых и малолегированных сталей
Плавленые флюсы различают по строению частиц: стекловидные, пемзовидные и кристаллические флюсы.
По размеру частиц (зерен) флюсы делятся на: тонкозернистые(с зерном доО,8мм);мелкозернистые(0,1 — 1,6 мм); среднезернистые<0,25 — 3,0 мм) и крупнозернистые (0,35 — 5,0мм).
Плавленые флюсы, в сравнении с керамическими, обладают более высокими технологическими свойствами (лучшая защита от воздуха, формирование наплавляемого сплава, отделимость шлаковой корки). Кроме того, плавленые флюсы более дешевые. Однако керамические флюсы позволяют в более широких пределах легировать наплавленный металл посредством элементов, входящих в флюс. Для механизированной наплавки наиболее широко используются плавленые флюсы.
Плавленые флюсы различают по содержанию в них окислов различных элементов. По количеству окиси кремния флюсы разделяются на: высококремнистые (38 — 44% SiO2); низкокремнистые (до 0,5SiO2); бескремнистые. По содержанию окиси марганца на: высокомарганцевые (более 30 %MnО); среднемарганцевые (15 — 30 % МnО); низкомарганцевые (менее 0,5 % МnО).
Высококремнистые плавленые флюсы предназначены в основном для сварки и наплавки деталей из углеродистых и низколегированных сталей (табл. 7.4). Наиболее широко в ремонтном производстве для восстановления деталей наплавкой используют высококремнистые марганцовистые флюсы ОСЦ-45, ОСЦ-45М, АН-348А и АН-348АМ.
Чтобы уменьшить окисление металла в результате его реакций с флюсом, для сварки легированных сталей используют флюсы с ограниченной концентрацией окиси кремния и окиси марганца. Состав некоторых таких флюсов приведен в табл. 7.5.
Рассмотренные плавленые флюсы являются системами, состоящими из неметаллических составляющих, окисных и галогенных соединений. Легирование наплавленного металла в этих случаях может иметь место только в результате диссоциации соединений, входящих в состав флюса, или в результате обменных реакций, которые сопровождаются либо повышением в металле концентрации кислорода, либо потерей им других полезных легирующих составляющих. Поэтому вводить таким способом большое количество легирующих элементов в наплавленный металл через флюс затруднительно, и оно ограничивается, как правило, десятыми долями процента.
Более эффективным способом легирования через флюсы является введение в их состав свободных металлических составляющих. В этих случаях флюс представляет собой смесь металлических и неметаллических составляющих. Такие флюсы называют керамическими. Составы керамических флюсов могут быть весьма разнообразными, включающими различные окислы, карбонаты, галогениды,
металлические порошки, различные сложные соединения и связующие. В качестве основного вида связующего обычно используют жидкое стекло.
Имея неоспоримое преимущество в виде возможности широкого диапазона легирования наплавленного сплава, керамические флюсы имеют и серьезные недостатки. Осуществляемое ими легирование связано с количеством флюса, переводимого в жидкую фазу, а оно в сильной степени зависит от сварочного режима и однородности химического состава флюса. Это приводит к значительной неоднородности наплавленного металла по химическому составу. Кроме того, к недостаткам керамических флюсов следует отнести .низкую механическую прочность и большую гигроскопичность.
Однако, несмотря на отмеченные недостатки, керамические флюсы достаточно широко используются для восстановления деталей наплавкой. Чаще применяют флюсы АНК.-18 и АНК.-19- Например, химический состав металла, наплавленного недорогой низкоуглеродистой электродной проволокой СЬ-08 под слоем флюса АНК-19 содержит: 0,49 % С; 0,66% Мn; 0,34%Si; 3,15 %Сr. При этом твердость наплавленного металла лежит в пределах ИКС 45 — 49.
Таблица 7.5. Состав флюса для сварки легированных сталей
Электродная проволока для сварки под флюсом выпускается по Государственному стандарту, который распространяется на горячекатаную и холоднокатаную проволоку из углеродистых, легированных и высоколегированных сталей. В ГОСТе указывается диаметр проволоки, химическиqсостав, размеры мотков и другие данные. Примерный химический состав материала проволоки можно определить по буквам и цифрам, входящим в обозначение марки проволоки. Сварочная проволока имеет индекс «СЬ», а наплавочная «Нп». Цифры указывают среднее содержание углерода в сотых долях процента. Марку проволоки выбирают в соответствии с химическим составом свариваемой стали. Например, для сварки малоуглеродистых сталей используют низкоуглеродистые проволоки СЬ-08, СЬ-08А, СЬ-08ГА и др. Легирующие элементы, входящие в состав проволоки, имеют те же обозначения, что и при маркировке стали. Буква «А» указывает на повышенную чистоту металла по содержанию серы и фосфора. Проволока, изготовленная из стали, выплавленной электрошлаковым или вакуумно-дуговым способом или же в вакуумно-индукционных печах, обозначается буквами Ш, БД и ВИ,
Наплавочную проволоку разделяют на три группы: из углеродистой стал и типа Нп-30, Нп-40, Нп-80 и другие, всего 8 марок; из легированной стали, например Нп-ЗОХ5, Нп-ЗОХГСА, всего 11 марок; из высоколегированной стали, например Нп-4X13, Нп-45Х4ВЗФ, Нп-45Х2В8Т, всего 9 марок.
Для наплавки под слоем флюса используют также и порошковые проволоки марки ПП-ЗХ2В8, ПП-10ХВ14.
Для повышения производительности процесса наплавки под флюсом последнее время в .качестве наплавочного электродного материала используют сплошные или порошковые ленты толщиной 0,3— 1 мм и шириной 20 — 100 мм. Однако для использования данных материалов для наплавки автомобильных деталей требуется проведение дополнительных исследований.
Режимы наплавки. Качество сварного соединения и наплавленной детали во многом определяется режимами наплавки, которые характеризуются размером сварочного тока,
напряжением, родом тока и его полярностью, скоростью сварки, диаметром и скоростью подачи электродной проволоки: К дополнительным параметрам, режима относится вылет электрода, наклон электрода к наплавляемой поверхности, марка флюса.
Параметры режима наплавки. выбирают исходя из толщины слоя наплавляемого металла, размеров детали, требуемой формы наплавляемого валика. Режим сварки выбирают по экспериментальным таблицам или расчетом.
Силу сварочного тока ориентировочно можно определить по эмпирической форме
где d— диаметр электрода, мм.
Скорость наплавки в метрах в минуту
где αн— коэффициент наплавки, г/(А- ч);Jсв— сила сварочного тока. А;М — масса 1 м металла наплавки, г.
Скорость подачи электродной проволоки в метрах в минуту
где d — диаметр электродной проволоки, мм;γ— плотность наплавленного металла, г/см 3 .
Частота вращения наплавляемой детали в оборотах в минуту
где υп — скорость подачи электродной проволоки, м/мbн;Δ— толщина слоя наплавки, мм;s— шаг наплавки, мм/об;D — диаметр восстанавливаемой детали, мм;η— коэффициент наплавления,
Обычно шаг наплавки sпринимают равным от 2 до 6 диаметров электродной проволоки за один оборот детали. Наплавку плоских поверхностей осуществляют через валик или отдельными участками, что позволяет уменьшить коробление детали.
При наплавке автомобильных дета лей, особенно таких, у которых длина значительно превышает диаметр наплавляемой поверхности, необходимо стремиться к минимальной глубине проплавления основного металла. Это позволяет уменьшить деформацию детали и зону термического влияния, а также снизить вероятность образования трещин в наплавленном металле. Поэтому при выборе режимов наплавки выбирают, как правило, минимально допустимый сварочный ток. Кроме того, увеличение диаметра электродной проволоки при неизменном сварочном токе также уменьшает глубину проплавления и увеличивает ширину шва в связи с эффектом блуждания дуги.
При сварке на постоянном токе глубина проплавления будет зависеть и от полярности, что объясняется различной температурой на катоде и аноде дуги. При сварке на постоянном токе обратной полярности (минус на деталь) глубина проплавления на 40 — 50 % меньше, чем при сварке током на прямой полярности. В определенных пределах глубину проплавления можно изменять, регулируя вылет электрода. С увеличением вылета электрода интенсифицируется его подогрев и соответственно скорость плавления, в результате чего толщина расплава под дугой увеличивается и глубина проплавления уменьшается.
Ширину наплавляемого валика регулируют выбором диаметра электродной проволоки и изменением напряжения дуги, При увеличении напряжения возрастает длина дуги, в результате чего увеличивается ее подвижность и возрастает доля теплоты дуги, расходуемой на расплавление флюса. При этом растет ширина валика наплавленного металла, а глубина проплавления остается практически постоянной.
В табл. 7.6 и 7.7 приведены режимы наплавки плоских и цилиндрических деталей.
Таблица 7.6. Режимы наплавки цилиндрических деталей под слоем флюса
Таблица 7.7. Режимы наплавки под слоем флюса плоских поверхностей
При использовании порошковой проволоки режимы наплавки необходимо выбирать по табл. 7.8.
Оборудование. Для восстановления деталей наплавкой под слоем флюса наиболее широко используется специальная установка УД-209. Наплавка осуществляется методом винтового или прямолинейного наложения сварочных швов на восстанавливаемую поверхность детали. Установка обеспечивает практически все виды наплавочных работ:
наплавку цилиндрических поверхностей по спирали с шагом наплавки от 2,8 до 12,6 мм;
наплавку деталей с колебаниями электрона на ширину наплавляемой поверхности (до 60 мм);
наплавку конусных поверхностей.
На установке возможна наплавка деталей диаметром от 25 до 360 мм и длиной от 100 до 800 мм. В качестве электродного материала используют проволоку сплошную и порошковую диаметром 1,2 — 3,2 мм.
Таблица 7.8.Режимы наплавки порошковой проволокой
Наплавочная установка обеспечивает фиксацию восстанавливаемой детали, ее вращательное движение, подачу электродной проволоки в зону горения дуги, поступательное перемещение электродной проволоки вдоль оси вращения детали и при необходимости приведение электродной проволоки в колебательное движение.
Наплавочная установка УД-209 (рис. 7.6) состоит из сварной станины, на которой размещены каретка, вращатель детали, механизм подачи электродной проволоки, мундштука, задней бабки с подвижной пиколью, устройства для отсоса газов, бункера для флюса и пульта управления.
Ряс. 7.6. Схема наплавочной установки УД-209
Каретка 5 установлена на станине 1 наплавочного станка и представляет собой плиту, на которой закреплены ролики: верхние — на неподвижных осях и нижние, имеющие устройство, поджимающее их к направляющим станины. На корпусе каретки крепятся механизмы подъема сварочной головки, а также концевые выключатели механизма подъема и перемещения каретки,
Механизм подачи 6 служит для подачи электродной проволоки через мундштук4 в зону наплавки. Механизм подачи установлен ни каретке и состоит из электродвигателя и червячного редуктора, соединенных между собой изоляционной муфтой и изолирующей прокладкой. Кроме того, механизм подачи электродной
проволоки содержит колебатель мундштука и обеспечивает одновременную подачу и колебания электрода. Регулирование скорости подачи электродной проволоки осуществляется ступенчато при помощи сменных шестерен.
Мундштук 4 установлен на механизме подачи, содержит спираль, являющуюся направляющей для электродной проволоки. Вращатель2 предназначен для вращения наплавляемой детали, а также для синхронного перемещения каретки при помощи ходового винта при определенных видах наплавки. Привод врашателя осуществляется через клиноременную передачу и червячный редуктор от тиристорного электродвигателя. Такой привод обеспечивает плавную регулировку частоты вращения шпинделя установки в пределах 0,06 —6,58 мин- 1 .
Задняя бабка 8 с подвижной пиколью предназначена для поджима длинномерных наплавляемых деталей. Пиколь имеет ручной привод и снабжена тепловым компенсатором. Газоотсос 1 установлен на каретке и предназначен для удаления аэрозолей, образующихся в процессе наплавки. Пульт управления 3 с установкой выполнен в виде панели и содержит помимо управляющих кнопок амперметр и вольтметр для контроля за силой тока и напряжением дуги, а также указатель чисел оборотов шпинделя.
Наплавочная установка питается от универсального сварочного выпрямителя ВДУ-506УЗ, имеющего крутопадающие и жесткие (пологопадающие) внешние характеристики, Данный выпрямитель имеет напряжение холостого хода не более 85 В, номинальное же рабочее напряжение для жестких внешних характеристик 50 В (пределы регулирования— 18— 50 В), а для падающих внешних характеристик 46 В (пределы регулирования 22 — 46 В). Номинальный сварочный ток достигает 500 А. Пределы регулирования сварочного тока для жестких внешних характеристик от 60 до 500 А, для падающих внешних характеристик от 50 до 500 А. Выпрямитель обеспечивает при номинальном напряжении сети легкое зажигание и устойчивое горение дуги при любом токе в пределах регулировочного диапазона.
В ремонтном производстве для наплавки деталей под флюсом достаточно широко используется автомат А-580М, который представляет собой универсальную сварочную головку облегченного типа. Его используют для наплавки цилиндрических деталей диаметром 50 мм электродной проволокой диаметром 1,6 — 4 мм. Автомат обеспечивает скорость подачи проволоки в пределах 78 — 198 м/ч. Автоматическую сварочную головку устанавливают на специальных вращателях или переоборудованных токарно-винторезных станках.
В последние годы институтом электросварки им. Е. О. Патона разработана серия станков У-652, У-653, У-654, предназначенная для наплавки под слоем флюса цилиндрических,
конических, шлицевых наружных и внутренних поверхностей деталей диаметром 50 — 800 мм и длиной до 1300мм.
В авторемонтном производстве наплавкой подслоем флюса восстанавливают десятки наименований деталей: коленчатые и распределительные валы, полуоси, валы коробок передач и пр. Анализ данных за 1985 — 1990 гг. по распределению работ по способам восстановления деталей позволяет сделать вывод о том, что каждая третья деталь восстанавливалась наплавкой под слоем флюса.