Для чего трансформатор с изолированной нейтрали



Как работает сеть трехфазного тока с изолированной нейтралью

Электрические сети могут работать с заземленной или изолированной нейтралью трансформаторов и генераторов . Сети 6, 10 и 35 кВ работают с изолированной нейтралью трансформаторов. Сети 660, 380 и 220 В могут работать как с изолированной, так и с заземленной нейтралью. Наиболее распространены четырехпроводные сети 380/220, которые в соответствии с требованиями правил устройства электроустановок (ПУЭ) должны иметь заземленную нейтраль.

Рассмотрим сети с изолированной нейтралью . На рисунке 1,а изображена схема такой сети трехфазного тока. Обмотка изображена соединенной в звезду, однако все сказанное ниже относится также и к случаю соединения вторичной обмотки в треугольник.

Рис. 1. Схема сети трехфазного тока с изолированной нейтралью (а). Замыкание на землю в сети с изолированной нейтралью (б).

Как бы хороша ни была в целом изоляция токоведущих частей сети от земли, все же проводники сети имеют всегда связь с землей. Связь эта двоякого рода.

1. Изоляция токоведущих частей имеет определенное сопротивление (или проводимость) по отношению к земле, обычно выражаемое в мегомах. Это означает, что через изоляцию проводников и землю проходит ток не которой величины. При хорошей изоляции этот ток весьма мал.

Допустим, например, что между проводником одной фазы сети и землей напряжение равно 220 В, а измеренное мегомметром сопротивление изоляции этого провода равно 0,5 МОм. Это значит, что ток на землю 220 этой фазы равен 220 / (0,5 х 1000000) = 0,00044 А или 0,44 мА. Этот ток называется током утечки.

Условно для наглядности на схеме сопротивления изоляции трех фаз r1 , r2 , r3 изображаются в виде сопротивлений, присоединенных каждое к одной точке провода. На самом деле токи утечки в исправной сети распределяются равномерно по всей длине проводов, в каждом участке сети они замыкаются через землю и их сумма (геометрическая, т. е. с учетом сдвига фаз) равна нулю.

2. Связь второго рода образуется емкостью про водников сети по отношению к земле. Как это понимать?

Каждый проводник сети и землю можно представить себе как две обкладки протяженного конденсатора. В воздушных линиях проводник и земля — это как бы обкладки конденсатора, а воздух между ними — диэлектрик. В кабельных линиях обкладками конденсатора являются жила кабеля и металлическая оболочка, соединенная с землей, а диэлектриком — изоляция.

При переменном напряжении изменение зарядов конденсаторов вызывает возникновение и прохождение через конденсаторы переменных токов. Эти так называемые емкостные токи в исправной сети равномерно распределены по длине проводов и в каждом отдельном участке также замыкаются через землю. На рис. 1,а сопротивления емкостей трех фаз на землю х1, х2, х3 условно показаны присоединенными каждое к одной точке сети. Чем больше длина сети, тем большую величину имеют токи утечки и емкостные токи.

Посмотрим, что же произойдет в изображенной на рисунке 1,а сети, если в одной из фаз (например, А) произойдет замыкание на землю , т. е. провод этой фазы будет соединен с землей через относительно малое сопротивление. Такой случай изображен на рисунке 1,б. Поскольку сопротивление между проводом фазы А и землей мало, сопротивления утечки и емкости на землю этой фазы шунтируются сопротивлением замыкания на землю. Теперь под воздействием линейного напряжения сети UB через место замыкания и землю будут проходить токи утечки и емкостные токи двух исправных фаз. Пути прохождения тока показаны стрелками на рисунке.

Замыкание, показанное на рисунке 1,б, называется однофазным замыканием на землю, а возникающий при этом аварийный ток — током однофазного замыкания.

Представим себе теперь, что однофазное замыкание вследствие повреждения изоляции произошло не непосредственно на землю, а на корпус какого-нибудь электроприемника — электродвигателя, электрического аппарата, либо на металлическую конструкцию, по которой проложены электрические провода (рис. 2). Такое замыкание называется замыканием на корпус. Если при этом корпус электроприемника или конструкция не имеют связи с землей, тогда они приобретают потенциал фазы сети или близкий к нему.

Рис. 2. Замыкание на корпус в сети с изолированной нейтралью

Прикосновение к корпусу равносильно прикосновению к фазе. Через тело человека, его обувь, пол, землю, сопротивления утечки и емкостные сопротивления исправных фаз образуется замкнутая цепь (для простоты на рис. 2 емкостные сопротивления не показаны).

Ток в этой цепи замыкания зависит от ее сопротивления и может нанести человеку тяжелое поражение или оказаться для него смертельным.

Рис. 3. Прикосновение человека к проводнику в сети с изолированной нейтралью при наличии в сети замыкания на землю

Из сказанного следует, что для прохождения тока через землю необходимо наличие замкнутой цепи (иногда представляют себе, что ток «уходит в землю» — это неверно). В сетях с изолированной нейтралью напряжением до 1000 В токи утечки и емкостные токи обычно невелики. Они зависят от состояния изоляции и длины сети. Даже в разветвленной сети они находятся в пределах нескольких ампер и ниже. Поэтому эти токи, как правило, недостаточны для расплавления плавких вставок или отключения автоматических выключателей.

Читайте также:  Как определить экранирующую обмотку трансформатора

При напряжениях выше 1000 В основное значение имеют емкостные токи, они могут достигать нескольких десятков ампер (если не предусмотрена их компенсация). Однако в этих сетях отключение поврежденных участков при однофазных замыканиях обычно не применяется, чтобы не создавать перерывов в электроснабжении.

Таким образом, в сети с изолированной нейтралью при наличии однофазного замыкания (о чем сигнализируют приборы контроля изоляции) продолжают работать электроприемники. Это возможно, так как при однофазных замыканиях линейное (междуфазное) напряжение не изменяется и все электроприемники получают энергию бесперебойно. Но при всяком однофазном замыкании в сети с изолированной нейтралью напряжения неповрежденных фаз по отношению к земле возрастают до линейных, а это способствует возникновению второго замыкания на землю в другой фазе. Образовавшееся двойное замыкание на землю создает серьезную опасность для людей. Следовательно, любая сеть с наличием в ней однофазного замыкания должна рассматриваться как находящаяся в аварийном состоянии , так как общие условия безопасности при таком состоянии сети резко ухудшаются.

Так, наличие «земли» увеличивает опасность поражения электрическим током при прикосновении к частям, находящимся под напряжением. Это видно, например, из рисунка 3, где показано прохождение тока поражения при случайном прикосновении к токоведущему проводу фазы А и неустраненной «земле» в фазе С. Человек при этом оказывается под воздействием линейного напряжения сети. Поэтому однофазные замыкания на землю или на корпус должны устраняться в кратчайший срок.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Источник

Эксплуатация трансформаторов напряжения в сетях с изолированной нейтралью

Виды замыканий на землю

Электрические сети 6–35 кВ — это сети с изолированной, либо с компенсированной нейтралью. Такой режим нейтрали позволяет при однофазных (ОЗЗ) или дуговых замыканиях на землю (ОДЗ) не проводить немедленное отключение сети. Надо отметить, что в сетях этих классов напряжений, замыкание на землю не является аварийным режимом, и случаются они достаточно часто. Нормативные документы допускают работу линии, с изолированной нейтралью, при ОЗЗ — до восьми часов, но при этом необходимо немедленно приступить к отысканию места замыкания и его устранению, так как в этом режиме есть большая опасность попадания людей под высокое напряжение.

Также, возможно повреждение электрооборудования из-за повышения фазного напряжения до уровня линейного. ОЗЗ — это, как правило, металлическое постоянное замыкание, а ОДЗ носит переменный характер. Например, раскачивающаяся на ветру ветка, касаясь высоковольтной линии (ВЛ), замыкает ее на землю, при этом зажигается дуга. ОДЗ это наиболее опасный вид замыканий на землю, так как при нем могут возникать перенапряжения 2,3–3,0 наибольшего фазного напряжения. Они наблюдаются уже при первом зажигании дуги и сопровождаются ее многократными зажиганиями. В этих режимах создаются все условия для появления феррорезонанса в сети.

ПКУ в составе ТН НОЛ.08-6(10)М и ТПОЛ-10III

Феррорезонанс и способы защиты от него

Феррорезонансный контур в сети с изолированной нейтралью — это контур нулевой последовательности с нелинейной характеристикой намагничивания. Трехфазный заземляемый трансформатор напряжения, по конструктиву, это три однофазных трансформатора, соединенные по схеме звезда/звезда, с обособленной магнитной системой. При перенапряжениях в сети индукция в магнитопроводе увеличивается, как минимум в 1,73 раза. В таких режимах возможно насыщение магнитопровода и, как следствие, возникновение феррорезонанса в сети. По данным служб энергоснабжения, ежегодно в эксплуатации повреждается 7–9% трансформаторов напряжения по причине феррорезонанса.

Существует множество способов защиты ТН от резонансных явлений в сети:

  • изготовление ТН с максимально уменьшенной рабочей индукцией;
  • включение в цепь ВН и НН дополнительных демпфирующих сопротивлений;
  • изготовление трехфазных трансформаторов напряжения с единой магнитной системой в пятистержневом исполнении;
  • применение специальных устройств, включаемых в цепь разомкнутого треугольника;
  • заземление нейтрали трехфазного трансформатора напряжения через токоограничивающий реактор;
  • применение специальных компенсационных обмоток и т.д.;
  • применение специальных релейных схем, для защиты обмотки ВН от сверхтоков.

Все эти меры в той или иной степени защищают измерительный трансформатор напряжения, но не решают проблему в корне.

Заземляемые ТН

Заземляемые трансформаторы напряжения применяются в сетях с изолированной нейтралью. Заземление нейтрали ТН позволяет осуществлять контроль изоляции сети с помощью дополнительных вторичных обмоток, соединенных по схеме звезда/треугольник. На наш взгляд, это основная функция заземляемых трансформаторов, функция измерения и учета — дополнительная. Зачастую, в электрических сетях эксплуатируются заземляемые трансформаторы напряжения, у которых защитные обмотки не используются. Применение заземляемых трансформаторов без использования функции контроля изоляции сети — неоправданный риск.

Это связано с тем, что:

  • заземляемые трансформаторы напряжения подвержены влиянию феррорезонансных явлений;
  • изоляцию обмотки ВН невозможно испытать в условиях эксплуатации приложенным одноминутным напряжением промышленной частоты.

Незаземляемые ТН

Для решения всех вопросов, связанных с эксплуатацией заземляемых трансформаторов напряжения в сетях с изолированной нейтралью, на нашем предприятии разработана новая трехфазная группа. Трехфазная 3хНОЛ.08-6(10)М группа, состоящая из трех незаземляемых трансформаторов, соединенных по схеме треугольник/треугольник. Основное преимущество 3хНОЛ.08-6(10)М — отсутствие заземляемого вывода с ослабленной изоляцией. Это значит, что трансформатор не подвержен влиянию феррорезонанса и не требует дополнительных защит от его воздействия. Также изоляцию этого трансформатора возможно испытать приложенным одноминутным напряжением промышленной частоты в условиях эксплуатации, так как в этом случае нет необходимости в источнике повышенной частоты.

Читайте также:  Зажим шейного нерва симптомы лечение

Трансформатор напряжения НОЛ.08-6(10)М

У незаземляемых трансформаторов нет высоковольтных выводов с ослабленной изоляцией, что так-же позволит избежать нарушений, которые зачастую случаются в эксплуатации, при определении сопротивления изоляции вывода «Х», так как есть разночтения в нормативной документации. На сегодняшний день большое количество пунктов коммерческого учета (ПКУ) имеют в своем составе заземляемые трансформаторы напряжения со встроенными предохранителями (ЗНОЛП). При однофазных замыканиях на землю, а они как указывалось выше, случаются достаточно часто в воздушных распределительных сетях, срабатывает встроенное защитное предохранительное устройство (ЗПУ). Встраиваемое ЗПУ, прежде всего, предназначено для защиты трансформатора напряжения от коротких замыканий во вторичных цепях.

Так как ток срабатывания предохранителя достаточно мал, то при различных перенапряжениях, вызванных, в том числе, и однофазными замыканиями на землю, — происходит отключение ТН. ЗПУ защищает обмотку ВН от сверхтоков, которые возможны при различных технологических нарушениях в электрических сетях. При срабатывании предохранителя учет электроэнергии будет отсутствовать. Для восстановления учета, необходимо заменить плавкую вставку ЗПУ.

Трехфазная группа

Трехфазная группа 3хНОЛ.08-6(10)М устойчива к различным перенапряжениям в электрических сетях, так как в отсутствии связи ТН с землей, контур нулевой последовательности также отсутствует.

Также, при однофазных замыканиях на землю, изоляция незаземляемого трансформатора не находится под повышенным напряжением, так как трансформаторы НОЛ включаются на линейное напряжение.

Незаземляемые измерительные трансформаторы напряжения лишены всех тех недостатков, которые характерны для заземляемых ТН, поэтому в пунктах коммерческого учета целесообразно использовать трехфазную группу 3хНОЛ.08-6(10)М.

Источник: Е.В. Игнатенко, главный конструктор отдела измерительных трансформаторов ОАО «СЗТТ»

Источник

Изолированная нейтраль. Устройство и работа. Применение

Понятие «изолированная нейтраль» неразрывно связано со способами передачи энергии, а также с защитой потребителя в трехфазных электрических сетях переменного тока. Для решения этих задач применяются линейные системы из 4-х проводов с равномерно распределенной нагрузкой по каждой из фаз. Достичь этого удается за счет введения в электрическую цепь нулевой жилы, называемой нейтралью.

Ее наличие, помимо создания обратной цепочки для рабочего тока, позволяет устанавливать в линии приборы релейной защиты, а также организовать повторное заземление на стороне потребителя. Для этого на обслуживаемом объекте обустраивается защитный контур, соединяемый отдельной шиной с нейтральным проводом трехфазной цепи.

Что такое изолированная нейтраль и в каких случаях она применяется

Изолированная нейтраль – это нулевая точка трехфазной сети, не заземленная на стороне источника электроэнергии (генератора переменного тока или трансформатора на подстанции). Сюда же относятся случаи, когда она соединяется с землей через вспомогательные приборы с большим внутренним сопротивлением (защитные, измерительные устройства или средства сигнализации).

Подобное решение нередко применяется в российских энергосистемах, где нейтраль вообще не предусмотрена. Такая возможность объясняется тем, что в высоковольтных линиях электропередач 6-10 кВ в качестве схемы распределения фаз применяется «треугольник«.

При изолированной нейтрали важно предусмотреть обязательное заземление оборудования на приемной стороне, защитив таким способом пользователя от удара током.

В отечественных силовых сетях изолированная нейтраль применяется в следующих системах передачи электроэнергии:

  • 3-фазные сети с действующим напряжением до 1 кВ (система заземления IT).
  • Их аналоги с напряжениями от 6 до 35 кВ (использование разрешено при допустимых значениях токов замыкания).
  • Низковольтные цепи, оснащенные защитными и измерительными устройствами в различных исполнениях (разделительными трансформаторами, в частности).
Изолированная нейтраль в сетях с напряжениями до 1000 В и низковольтные цепи

При эксплуатации электрических сетей, рассчитанных на напряжения 380 или 660 В, особое внимание уделяется безопасности обслуживающего персонала и исключению случайного искрообразования.

К объектам, на которых используются такие сети, относят:
  • Угольные шахты.
  • Рудники и торфяные разработки.
  • Мобильные (передвижные) станции.
  • Особо опасные помещения, в которых хранятся легко воспламеняющиеся и взрывчатые вещества.

Особенность этих систем состоит в том, что при напряжениях до 1 кВ в сетях небольшой протяженности емкостная проводимость относительно земли очень мала. По этой причине при случайном касании человеком одной из фаз ток, проходящий через его тело, сравнительно невелик и практически безопасен. Это объясняется тем, что замкнутой цепи для его протекания не образуется.

Именно поэтому использование изолированной нейтрали в электроустановках перечисленных объектов считается не только целесообразным, но и соответствующим требованиям ТБ. Низковольтные цепи с защитными устройствами различного типа относятся к этой же категории трехфазных силовых сетей.

Сети с напряжением более 1 кВ

К электрическим сетям этого класса, отличающимся небольшими по величине токами замыкания, относятся силовые трехфазные линии напряжением до 35 кВ. В этом случае емкостной составляющей токов утечки пренебречь уже не удается. В штатном режиме токовые показатели в каждой из фаз определяются векторной суммой импедансов, образующихся из-за емкостных утечек в землю. Поскольку геометрическая сумма рабочих токов в каждой из фаз равна нулю – утечки в землю в этом случае практически отсутствуют.

Читайте также:  Инструменты зажимы для пирсинга

В аварийных ситуациях (при замыкании на грунт) потенциал поврежденной фазы падает до нуля, а напряжения на двух других – возрастают до линейных величин (380 В). Емкостные токи в оставшихся неповрежденными линиях также увеличиваются в √3 раз. Это объясняется тем, что к образующим емкость линиям прикладываются не фазные, а линейные напряжения. В итоге емкостный ток замыкания на землю оказывается в 3 раза большим, чем тот же показатель в штатном режиме.

В нормальных условиях рабочие значения указанных величин относительно невелики. К примеру, для (высоковольтных линий) ВЛ 10 кВ протяженностью порядка 10 км емкостный ток составляет всего 0,3 А, а для кабельной линии с теми же параметрами от равен 1,0 А.

Популярность ВЛ напряжением 3-35 кВ, в состав которых входит изолированная нейтраль, связана не только с их безопасностью (при нарушении правил эксплуатации они все равно опасны для пользователя). Их привлекательность объясняется способностью обеспечить нормальные условия работы оборудования при линейном напряжении.

Требования к изоляции ВЛ

При замыкании фазы высоковольтных систем на землю возможно возникновение перемежающейся дуги, сопровождающейся опасными перенапряжениями и резонансными явлениями. При величине этих перенапряжений, достигающих (2,5-3,9) Uф в случае поврежденной или изношенной изоляции возможен ее пробой и короткое замыкание в линии. Именно поэтому провода в ВЛ подбираются с учетом качества линейной изоляции, определяемой кратностью резонансных явлений.

Возникновение перемежающейся дуги возможно при величинах емкостных токов замыкания на землю порядка 10, 15, 20 или 30 А для различных условий эксплуатации. Два нижних токовый предела относится к сетям с рабочими напряжениями 35 и 20 кВ. При напряжениях 6 и 10 кВ они составляют соответственно 20 и 30 А и более.

Для исключения проявлений опасного для оборудования и человека эффекта в нейтрали трехфазных сетей устанавливается компенсирующий реактор в виде дугогасящего индуктивного элемента. Его основной показатель (индуктивность) подбирается из того расчета, чтобы по возможности полностью компенсировать емкостный ток в месте замыкания. Вместе с тем он должен быть достаточным для того, чтобы во время аварии срабатывали исполнительные цепи релейной зашиты.

Преимущества и недостатки электрических сетей с изолированной нейтралью
К преимуществам, относят:
  • Замыкание фазы на землю при изолированной нейтрали не означает КЗ, поскольку прямое электрическое соединение между ними отсутствует.
  • Токи однофазного замыкания (ОЗЗ) незначительны по величине.
  • Допустимость работы системы в режиме ОЗЗ некоторое время, достаточное для отыскания неисправности и ее устранения.
  • Емкостной характер токов замыкания, объясняемый особым типом связи, существующей между кабельными/воздушными линиями с электрооборудованием и землей.

Плюсом этого способа организации 4-х проводной линии также считается отсутствие активной токовой составляющей. Последнее объясняется тем, что резистивной связи между землей и нейтралью в этом случае не существует.

Изолированная нейтраль в составе трехфазных цепей передачи электроэнергии применяется крайне редко, поскольку у нее имеется ряд серьезных недостатков. К ним относятся:
  • Сложность выявления и устранения неисправностей.
  • Необходимость надежной изоляции линейных проводников.
  • Опасность поражения высоким напряжением при длительном замыкании на землю.
  • Невозможность обеспечить нормальную работу релейной защиты при 1-фазных замыканиях.
  • Возможность повреждения изоляции из-за воздействия на нее дуговых перенапряжений. Случайные разрушения могут обнаружиться на любых участках ВЛ или кабельной укладки из-за пробоя изоляции в проблемных местах.

Все перечисленное позволяет заключить, что недостатки этих систем при напряжениях выше 1 кВ превышают их достоинства. Однако в определенных условиях этот режим достаточно эффективен и не нарушает требований, предъявляемых к электросетям нормативными документами (ПУЭ, в частности).

Области применения
Как правило, изолированная нейтраль используется на участках линий, к которым предъявляются повышенные требования в части безопасности эксплуатации. Кроме того, она востребована на объектах, где нет возможности обустроить полноценное заземление. К таким местам относятся:
  • Морские суда, а также нефте- и газодобывающие платформы.
  • Шахты и подобные им объекты, связанные с добычей полезных ископаемых при рабочих напряжениях 380-660 В.
  • Подземные службы гражданского назначения (метро, в частности).
  • Цепи управления рельсовыми подъемными кранами.
  • Осветительные сети.

В открытом море и на платформах использование корпуса в качестве заземления невозможно, поскольку он имеет специальную анодную защиту. К тому же в зоне стекания тока в жидкую среду защитный слой со временем разрушается.

Изолированная нейтраль также применяется в бытовых генераторах, работающих на различных видах горючего топлива (бензине, газе или солярке).

Этот способ организации питающих линий широко распространен в виде понижающих/разделительных трансформаторов, необходимых для безопасной эксплуатации переносных светильников. Последние предназначаются для работы в особо опасных условиях и в замкнутых пространствах, к которым относятся траншеи, цистерны и помещения с повышенным уровнем влажности.

Источник

Оцените статью
toolgir.ru
Adblock
detector