Геометрические параметры рабочей части спирального сверла



Геометрия спирального сверла

Сверление является одним из самых распространённых методов получе­ния отверстия. Режущим инструментом служит сверло, с помощью которого получают отверстие в сплошном материале или увеличивают диаметр ранее просверленного отверстия (рассверливание). Движение резания при свер­лении — вращательное, движение подачи — поступательное. Режущая часть сверла изготовляется из инструментальных сталей (Р18, P12, P6M5 и др.) и из твердых сплавов. По конструкции различают свёрла: спиральные, с прямыми канавками, перовые, для глубоких отверстий, для кольцевого сверления, центровочные и специальные комбинированные. К конструктив­ным элементам относятся: диаметр сверла D, угол режущей части (угол при вершине), угол наклона винтовой канавки w, геометрические пара­метры режущей части сверла, т.е. соответственно передний g и задний a углы и угол резания d, толщина сердцевины d (или диаметр сердцевины), толщина пера (зуба) b, ширина ленточки f, обратная конусность j1, форма режущей кромки и профиль канавки сверла, длина рабочей части lo, общая длина сверла L.

Рис. 5.9. Части и элементы спирального сверла

Диаметр сверла следует всегда брать немного меньше, чем диаметр просверливаемого отверстия, так как диаметр отверстия при сверлении увеличивается.

Как и резец, сверло имеет передний и задний углы. Передний угол — угол между касательной к передней поверхности в рассматриваемой точке режущей кромки и нормалью в той же точке к поверхности вращения режу­щей кромки вокруг оси сверла. Передний угол рассматривается в плоскос­ти, перпендикулярной к режущей кромке.

Рис. 5.10. Передний и задний углы сверла

Наибольшее значение угол g имеет на периферии сверла, где в плос­кости, параллельной оси сверла, он равен углу наклона винтовой канавки w. Наименьшее значение угол g имеет у вершины сверла. На поперечной кромке угол g имеет отрицательное значение, что создаёт угол резания больше 90°, а, следовательно, и тяжелые условия работы. Такое резкое из­менение переднего угла вдоль всей длины режущей кромки является боль­шим недостатком сверла, так как это вызывает более сложные условия об­разования стружки. На периферии сверла, где небольшая скорость резания и наибольшее тепловыделение, необходимо было бы иметь и наибольшее те­ло зуба сверла. Большой же передний угол уменьшает угол заострения, что приводит к более быстрому нагреву этой части сверла, а, следова­тельно, и к наибольшему износу.

Задний угол a — угол между касательной к задней поверхности в рассматриваемой точке режущей кромки и касательной в той же точке к окружности ее вращения вокруг оси сверла. Этот угол принято рассматри­вать в плоскости, касательной к цилиндрической поверхности, на которой лежит рассматриваемая точка режущей кромки.

Для точки, находящейся на периферии сверла, задний угол в нормаль­ной плоскости Б-Б может быть определён по формуле

Действительное значение заднего угла во время работы иное по срав­нению с тем углом, который мы получили при заточке и измерили в стати­ческом состоянии. Это объясняется тем, что сверло во время работы не только вращается, но и перемещается вдоль оси. Траекторией движения точки будет не окружность (как это принимают при измерении угла), а некоторая винтовая линия, шаг которой равен подаче свёрла в миллимет­рах за один его оборот. Таким образом, поверхность резания, образуе­мая всей режущей кромкой, представляет собой винтовую поверхность, касательная к которой и будет действительной плоскостью резания.

Рис. 5.11. Поверхности заготовки при сверлении

Действительный задний угол в процессе резания a’ заключен между этой плоскостью и плоскостью, касательной к задней поверхности сверла.

Рис. 5.12. Углы режущих кромок сверла в процессе резания

Он меньше угла, измеренного в статическом состоянии, на некоторую величину m:

Чем меньше диаметр окружности, на которой находится рассматривае­мая точка режущей кромки, и чем больше подача s тем больше угол m и меньше действительный задний угол a’.

Читайте также:  Как проверить электромагнитный клапан мультиметром опель

Действительный же передний угол в процессе резания g’ соответс­твенно будет больше угла g измеренного после заточки в статическом состоянии:

Чтобы обеспечить достаточную величину заднего угла в процессе ре­зания в точках режущей кромки, близко расположенных к оси сверла, а также для получения более или менее одинакового угла заострения зуба вдоль всей длины режущей кромки, задний угол заточки делается: на пе­риферии 8 -14°, у сердцевины 20 — 27°, задний угол на ленточках сверла 0°.

Кроме переднего и заднего углов, сверло характеризуется углом наклона винтовой канавки w, углом наклона поперечной кромки y, углом при вершине 2j, углом обратной конусности j1. Угол w = 18-30°, y=55°, j1 = 2-3°, у свёрл из инструментальных сталей 2j = 60-140°.

Спиральное сверло имеет ряд особенностей, отрицательно влияющих на протекание процесса стружкообразования при сверлении:

а) уменьшение переднего утла, в различных точках режущих кромок по мере приближения рассматриваемой точки к оси сверла,

б) неблагоприятные условия резания у поперечной кромки (так как
угол резания здесь больше 90°),

в) отсутствие заднего угла у ленточек сверла, что создает большое
трение об обработанную поверхность.

Для облегчения процесса стружкообразования и повышения режущих свойств сверла производят двойную заточку сверла и подточку перемычки и ленточки.

При двойной заточке сверла вторая заточка производится под углом 2jо=70° на ширине В=2,5-15 мм.

Рис. 5.13. Элементы заточки и подточки спиральных свёрл

Такая заточка повышает стойкость сверла, а при одной и той же стойкости позволяет увеличить и скорость резания.

Подточка перемычки (сердцевины) производится на длине l=3-15мм.

От такой подточки уменьшается длина поперечной кромки (размер А=1,5-7,5 мм) и величина угла резания в точках режущих кромок, распо­ложенных вблизи перемычки сверла. Для уменьшения трения ленточек об обратную поверхность (о стенки отверстия) производится подточка ленто­чек под углом a1=6-8° на длине l1= 1,5-4 мм, что приводит к повышению стойкости сверла.

Дата добавления: 2017-12-05 ; просмотров: 7890 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Спиральное сверло

Рассмотрим элементы и формы заточки стандартного спирального сверла.

Части спирального сверла

На рисунке показаны основные элементы сверла.

  1. задняя поверхность
  2. спинка зуба, перемычка
  3. передняя поверхность
  4. режущая кромка
  5. канавка
  6. режущие кромки
  7. зуб
  8. кромка ленточки
  9. ленточка
  10. поперечная кромка

Углы спирального сверла

Угол при вершине 2φ зависит от типа обрабатываемого материала. Для обработке стали этот угол должен быть равен 116° — 118°, для обработки чугуна и твердой бронзы 90° — 100°, для обработки латуни, баббита, силумина — 140°, красной меди — 125°. У стандартных спиральных сверел этот угол составляет 116° — 118°.

Заточка сверла

При заточке сверла необходимо следить за тем, чтобы его режущие кромки были прямолинейны, и их длина и образуемые ими с осью сверла углы одинаковы. Угол наклона поперечной кромки φn для сверел диаметром до 15 мм составлять 50 градусов, а для сверел больших диаметров — 55°.

Правильная заточка сверла позволяет создать благоприятные условия резания, уменьшить необходимую силу подачи и увеличить стойкость сверла. Для этого применяют подточку перемычки, доводя длину поперечной режущей кромки до 0,1 от диаметра сверла. При этом толщина перемычки по всей длине сверла остается без изменения, а значит прочность не уменьшается.

На границе ленточки и режущей кромки сверла происходит наибольший износ. Для его уменьшения затачивают у ленточки на длине l = 1,5. 5мм задний угол α1, оставляя фаску f = 0,1. 0,2 мм.

Читайте также:  Браслет картье серебряный гвоздь

Вершина сверла может затачиваться под двумя углами 2φ=116° — 118°. и 2φ0=70° — 75° при ширине фаски b, равной 0,2 диаметра сверла, такой способ заточки позволяет уменьшить давление на единицу длины режущей кромки и улучшить отвод тепла.

Сверло конструкции Жирова

Сверло конструкции В.И. Жирова представляет собой спиральное сверло с комбинированной заточкой, подточкой и прорезкой поперечной кромки, а также с тройной заточкой режущих кромок под углами:

Такой особый способ заточки позволяет добиться уменьшения осевой силы при сверлении чугуна в 3-4 раза, а при сверлении стали в 2-3 раза. Это достоинство особенно ощутимо на станках с ручной подачей режущего инструмента.

Режимы резания при сверлении

Рекомендуемые значения подачи и скорости резания при работе быстрорежущими сверлами представлены на рисунке.

Значение подачи указано в мм/об, скорость резания в м/мин.

При использовании сверел из углеродистой стали для указанной в таблице подачи скорость резания необходимо уменьшить в 2 раза. При сверлении на глубину, более трех диаметров сверла скорость резания следует уменьшить.

Подача и скорость резания при рассверливании

Рекомендуемые скорости резания при рассверливании представлены в таблице.

Источник

Устройство и геометрические параметры сверла, зенкера и развертки

Отверстия на сверлильных станках обрабатывают сверлами, зенкерами и развертками.

Сверла по конструкции и назначению подразделяют на спиральные, центровочные и специальные. Наиболее распространенный для сверления и рассверливания инструмент — спиральное сверло (рис. 6.40, а), состоящее из рабочей части 6, шейки 2, хвостовика 4 и лапки 3.

В рабочей части 6 различают режущую часть 1 и направляющую часть 5 с винтовыми канавками. Шейка 2 соединяет рабочую часть сверла с хвостовиком. Хвостовик 4 необходим для установки сверла в шпинделе станка. Лапка 3 является упором при выбивании сверла из отверстия шпинделя.

Элементы рабочей части и геометрические параметры спирального сверла показаны на рис. 6.40, б. Сверло имеет две главные режущие кромки 11, образованные пересечением передних 10 и задних 7 поверхностей лезвия и выполняющие основную работу резания; поперечную режущую кромку 12 (перемычку) и две вспомогательные режущие кромки 9. На цилиндрической части сверла вдоль винтовой канавки расположены две узкие ленточки 8, обеспечивающие направление сверла при резании.

Геометрические параметры сверла определяют условия его работы. Передний угол γ измеряют в главной секущей плоскости II – II, перпендикулярной к главной кромке. Задний угол α измеряют в плоскости I – I, параллельной оси сверла. У наружной поверхности сверла = 8–12; по мере приближения к оси сверла задний угол возрастает до 20–25. Передний и задний углы в различных точках главной режущей кромки различны. У наружной поверхности сверла передний угол γ наибольший, а задний угол α наименьший; ближе к оси – наоборот. Угол при вершине сверла 2φ измеряют между главными режущими кромками; его значение различно в зависимости от обрабатываемого материала, обычно = 90–118°; при сверлении сталей средней твердости = 116–120°. Угол наклона поперечной режущей кромки ψ измеряют между проекциями главной и поперечной режущих кромок на плоскость, перпендикулярную к оси сверла. У стандартных сверл = 50–55°. Угол наклона винтовой канавки ω измеряют по наружному диаметру. Обычно = 18–30°. С увеличением угла ω увеличивается передний угол γ; при этом облегчается процесс резания и улучшается выход стружки.

Для глубоких отверстий (длина отверстия больше пяти диаметров) применяют специальные сверла. На рис. 6.40, в показано однокромочное сверло для сверления глубоких отверстий диаметром 30-8- мм. Сверло имеет твердосплавную режущую пластину 1 и две направляющие пластинки 2. Смазочно-охлаждающая жидкость подается в зону резания и вымывает стружку через внутренний канал 3 сверла.

Читайте также:  Кедр плазмотрон cut 80 pro ца 5м 8012041

Сквозные отверстия диаметром более 100 мм сверлят кольцевыми сверлами (рис. 6.40, г). Сверло состоит из полого корпуса 5 с винтовыми канавками. На его торцевой части закреплены режущие пластинки 4 (резцы), ширина которых больше толщины стенок корпуса. Режущие кромки пластинок выступают со стороны торца наружного и внутреннего диаметров корпуса. Число пластинок 4-8 в зависимости от диаметра сверла. Таким сверлом вырезается кольцевая канавка шириной, равной ширине пластинок. Смазочно-охлаждающую жидкость подают через внутреннюю полость сверла, а стружка отводится по винтовым канавкам.

Типы сверл и их устройство. Сверло является инструментом, с помощью которого получают отверстия или увеличивают диаметр ранее просверленного отверстия.

На рис. 54 показаны различные типы сверл: перовые (рис. 54, г), двухкромочные (рис. 54, ж), спиральные (рис. 54,а и б), ружейное (рис. 54, д), для кольцевого сверления (рис. 54, з), центровочные (рис. 54, и), шнековые (рис. 54, к).

Рис. 54. Виды сверл: а, б — спиральные, в—с прямыми канавками, г — перовое, д — ружейное, е — однокромочное с внутренним отводом стружки, ж – двухкромочное, з – для кольцевого сверления, и – центровочное, к – шнековые.

На сверлильных станках сверло совершает вращательное (главное) движение и продольное (движение подачи) вдоль оси отверстия, заготовка неподвижна (рис. 64.а).

При работе на токарных станках вращательное (главное движение) совершает обрабатываемая деталь, а поступательное движение вдоль оси отверстия (движение подачи) совершает сверло (рис.64.б).

Рис. 64. Схемы сверления, зенкерования и развертывания

Диаметр просверленного отверстия можно увеличить сверлом большего диаметра. Такие операции называются рассверливанием (рис.64.в).

При сверлении обеспечиваются сравнительно невысокая точность и качество поверхности.

Для получения отверстий более высокой точности и чистоты поверхности после сверления на том же станке выполняются зенкерование и развертывание.

Зенкерование – обработка предварительно полученных отверстий для придания им более правильной геометрической формы, повышения точности и снижения шероховатости. Многолезвийный режущим инструментом – зенкером, который имеет более жесткую рабочую часть, число зубьев не менее трех (рис. 64.г).

Развертывание – окончательная обработка цилиндрического или конического отверстия разверткой в целях получения высокой точности и низкой шероховатости. Развертки – многолезвийный инструмент, срезающий очень тонкие слои с обрабатываемой поверхности (рис. 64.д).

Схемы сверления, зенкерования и развертывания представлены на рисунке 64.

Зенкерами (рис. 6.41) обрабатывают отверстия в литых или штампованных заготовках, а также предварительно просверленные отверстия. В отличие от сверл зенкеры снабжены тремя или четырьмя главными режущими кромками и не имеют поперечной кромки. Режущая часть 1 выполняет основную работу резания. Калибрующая часть 5 служит для направления зенкера в отверстии и обеспечивает необходимые точность и шероховатость поверхности (2-шейка, 3- лапка, 4- хвостовик, 6 – рабочая часть).

По виду обрабатываемых отверстий зенкеры делят на цилиндрические (рис. 6.41, а), конические (рис. 6.41, б) и торцевые (рис. 6.41, в). Зенкеры бывают цельные с коническим хвостовиком (рис. 6.41, а, б) и насадные (рис. 6.41, в).

Развертками окончательно обрабатывают отверстия. По форме обрабатываемого отверстия различают цилиндрические (рис. 6.41, г) и конические (рис. 6.41, д) развертки. Развертки имеют 6-12 главных режущих кромок, расположенных на режущей части 7 с направляющим конусом. Калибрующая часть 8 направляет развертку в отверстии и обеспечивает необходимые точность и шероховатость поверхности.

По конструкции закрепления развертки делят на хвостовые и насадные. На рис. 6.41, е показана машинная насадная развертка с механическим креплением режущих пластинок в ее корпусе.

Источник

Оцените статью
toolgir.ru
Adblock
detector