Источник тепла при электродуговой сварке



Сварочные источники теплоты

Сварочные операции выполняются путем локального нагрева сварного изделия до температуры, определяемой свойствами свариваемого материала и типом сварного шва.

  • Для сварки плавлением температура в сварном шве должна быть выше, чем температура плавления, а для сварки под давлением это самая низкая температура, при которой сварное соединение может быть получено в этих условиях.

Наиболее эффективное использование тепла для выполнения сварочной операции требует использования большинства локальных входов, так что свариваемый материал находится в температурном состоянии, которое можно сваривать только с минимально необходимым объемом.

Следующие источники тепла необходимы для сварки.

  • 1) Достаточная огневая мощь.
  • 2) высокая концентрация тепла;
  • 3) Значительная эффективность.

Кроме того, они должны быть просты в использовании.

Тепловая мощность источника — это общее количество тепла (кал / с, Вт / с), выработанное за единицу времени.

Часть тепла не помогает нагревать окружающую среду, а другие части эффективно расходуются на нагрев продукта. Количество тепла, сообщаемое источником тепла в единицу времени нагреваемого продукта, называется эффективной мощностью источника тепла.

Очень важной характеристикой любого источника тепла является эффективный коэффициент полезного действия. Это отношение эффективной мощности к общей тепловой мощности.

Одним из элементов потерь является потеря, определяемая так называемым тепловым КПД.

Наиболее распространенными источниками тепла для сварки плавлением являются газовые сварочные горелки, электрические дуги, электрошлаковые источники тепла, электронные лучи и лучи. В термической обработке при сварке давлением используется пламя горючего газа, нагрев тока, индукционный нагрев и нагрев, который преобразует механическую энергию в тепло.

Поэтому используется источник тепла.

Ожоги между дугой прямого действия, продуктами сварки и металлическим или углеродным электродом. При сварке металлическими электродами оба конца свариваемых элементов и металл стержня электрода плавятся, образуя общую ванну расплавленного металла. Сварка с использованием электрической дуги прямого действия с металлическим электродом является наиболее распространенным видом сварки, и дуговая сварка угольным электродом используется редко.

  • Независимой электрической дугой, которая горит между тугоплавкими электродами в потоке водорода, является атомно-водородная сварка. Этот вид сварки не нашел широкого применения.

Высококалорийная газовая газопламенная сварка горением кислородным потоком. Оксиацетиленовая сварка в основном используется для сварки тонких пластин.

Джоулевое тепло, выделяемое при прохождении тока через локальное контактное сопротивление поверхности изделия, — это сварка сопротивлением. Это включает методы точечной, шовной и стыковой сварки.

  • Тепло, генерируемое трением.
  • Высокочастотный тепловой поток (радиочастотная сварка).
  • Тепло, возбуждаемое квантовым генератором.
  • Тепло, возбуждаемое электронным пучком в вакууме.

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Источник

Теоретические основы дуговой и электрошлаковой сварки

Не все тепло, выделяемое дугой (или током, проходящим через шлаковую ванну при электрошлаковой сварке), используется эффективно, часть его неизбежно расходуется непроизводительно.

Производительность сварки зависит от полезной, так называемой эффективной мощности дуги (или при электрошлаковой сварке — эффективной мощности электрошлакового процесса).

Эффективная тепловая мощность электрической дуги и электрошлакового процесса — это количество тепла, введенное в свариваемое изделие дугой (или током, проходящим через шлаковую ванну), в единицу времени.

При дуговой сварке эффективная тепловая мощность дуги включает тепло непосредственно выделяющееся в анодном и катодном пятнах электрода и свариваемого изделия; вводимое в изделие столбом дуги благодаря теплообмену; поступающее в ванну с каплями расплавленного электродного металла, а также с расплавленным флюсом или электродным покрытием.

При электрошлаковой сварке эффективная мощность процесса включает тепло передающееся шлаковой ванной изделию, электроду и металлической ванне; вводимое в зону сварки вместе с электродом, предварительно нагретым проходящим по нему током, лучевым и конвекционным теплом, излучаемым шлаковой ванной; передающееся кромкам свариваемого изделия шлаковой ванной благодаря излучению тепла и конвекции*.

* Конвекция — перенос тепла, обусловленный перемещением масс газа (или жидкости) под влиянием разницы температур в различных частях газа (или жидкости), например при нагревании жидкости снизу.

Эффективная тепловая мощность при дуговой и электрошлаковой сварке меньше полной тепловой мощности этих процессов. Разность между ними и составляет непроизводительные потери тепла.

Читайте также:  Кримпер knipex kn 975112

При дуговой сварке тепло непроизводительно расходуется на нагрев неплавящегося электрода (угольного, вольфрамового), на теплоотдачу в окружающую среду на нагрев разбрызгиваемого электродного металла и покрытия (при сварке открытой дугой), на нагрев массы свариваемого изделия и на плавление флюса.

При электрошлаковой сварке непроизводительные потери тепла включают потери на нагрев медных ползунов и на теплоотдачу в окружающую среду, в том числе в массу свариваемого изделия.

Эффективную тепловую мощность можно определить по формуле

где η — эффективный к.п.д. нагрева изделия, который представляет отношение эффективной мощности дуги (или электрошлакового процесса) к полной тепловой мощности.

Эффективный к.п.д. зависит от способа сварки, материала электрода, состава покрытия электродов и флюса, а также от некоторых других факторов.

Так, например, при сварке открытой дугой угольным и вольфрамовым электродами и при сварке металлическим электродом с ионизирующим покрытием эффективный к.п.д. в среднем составляет 0,60; при ручной сварке толстопокрытыми электродами он значительно выше и составляет 0,75; при сварке под флюсом достигает 0,80 и при электрошлаковой сварке — 0,70.

Эффективный к.п.д. определяется тепловым балансом процесса сварки, т. е. характером распределения полной тепловой мощности, выделяемой током при различных способах и условиях сварки.

При электрошлаковой сварке много тепла расходуется вследствие отвода его медными ползунами (табл. 1) и в массу свариваемого металла. Следует, однако, отметить, что, несмотря на повышенный теплоотвод в основной металл и в ползуны, электрошлаковый процесс требует значительно меньшего расхода электроэнергии на 1 пог. м, шва, чем дуговая сварка под флюсом.

Это обусловливается возможностью уменьшения объема наплавляемого металла за счет сварки без разделки кромок с обязательным зазором. В отдельных случаях (особенно при сварке закаливающихся сталей) тепло, расходуемое на отвод тепла в массу свариваемого металла, не является бесполезно потерянным, так как оно вызывает предварительный и сопутствующий подогрев основного металла.

Таблица 1. Распределение затрачиваемого тепла при сварке плавлением.

Источник

ОСНОВЫ ЭЛЕКТРОДУГОВОЙ СВАРКИ

Сварочная дуга. Источником теп­ла при дуговой сварке является сва­рочная дуга — устойчивый электри­ческий разряд в сильно ионизирован­ной смеси газов и паров материалов, используемых при сварке, и характе­ризуемый высокой плотностью токов и высокой температурой.

Тепло, выделяемое в дуге, расходу­ется на нагрев газа, создание свето­вого потока и непосредственно на сварку. Температура дуги—нерав­номерная, наиболее высокая в центре газового столба—около 6000° С (рис. 7.1).

Основной характеристикой сва­рочной дуги как источника энергии является эффективная тепловая мощность qэ — это количество тепло­ты, введенное в металл в процессе сварки в единицу времени и затра­ченное на его нагрев. Эффективная тепловая мощность является частью полной тепловой мощности дуги q,так как при любом виде сварки на­блюдаются непроизводительные рас­ходы теплоты дуги на излучение, теплоотвод в металл и пр. Отношение эф­фективной тепловой мощности к пол­ной тепловой мощности называют эф­фективным коэффициентом полезно­го действия процесса нагрева:

Для различных видов сварки зна­чение ηэ может меняться в довольно широких пределах от 0,3 до 0,95, на­пример, коэффициент полезного дей­ствии процесса нагрева открытой ду­ги, возбуждаемой угольным электро­дом— 0,5 — 0,65; сварка штучными электродами с покрытием — 0,7 — 0,85; дуга в аргоне — 0,5 — 0,6; свар­ка под флюсом — 0,85 — 0,93.

Количество теплоты, вводимое в металл в процессе горения дуги, отне­сенное к единице длины шва получи­ло название погонной энергии свар­ки. Погонная энергия равна отноше­нию эффективной мощности дуги к скорости перемещения дуги υсв.

При восстановлении деталей ис­пользуют три вида сварочных дуг (рис. 7,2). Они отличаются количест­вом электродов и способом их вклю­чения и свариваемого металла в электрическую цепь, Когда дуга горит между электродом и изделием, ее на­зывают дугой прямого действия. Ког­да дуга горит между двумя электро­дами, а свариваемое изделие не включено в электрическую цепь, ее называют дугой косвенного действия. Трехфазная дуга возбуждается меж­ду двумя электродами, а также меж­ду каждым электродом и основным металлом.

Читайте также:  Захват струбцина для кровельных сэндвич панелей

Рис. 7.1, Распределение температуры t в сварочной дуге

Рис. 7.2. Виды сварочных дуг:

а —- прямого действия; б — косвенного действия; в —комбинированного действия (трехфазная)

По роду тока различают электри­ческие дуги, питаемые переменным и постоянным током. При использова­нии постоянного тока различают сварку на прямой и обратной поляр­ности. При горении электрической дуги постоянного тока наибольшее количество тепла выделяется на положительном полюсе. Это объясняет­ся тем, что поток электронов в дуге испускается отрицательным полю­сом — катодом. Электроны как бы бомбардируют положительный по­люс (анод), вследствие чего он разо­гревается сильнее, чем катод. При сварке для плавления свариваемого металла необходимо затратить боль­ше тепла, чем для расплавления са­мого электрода. Поэтому обычно от­рицательный полюс сварочной цепи присоединяют к электроду, а поло­жительный – к свариваемому ме­таллу. Такое присоединение называется прямой полярностью. Если же отрицательный полюс источника пи­тания присоединен к свариваемому металлу, а положительный — к элек­троду, то такая полярность называет­ся обратной, Она применяется реже и только в тех случаях, когда необходи­мо получить меньший нагрев детали. Например, обратная полярность применяется при сварке тонколисто­вых изделий для предотвращения сквозного проплавления, сварке ле­гированных сталей, которые очень чувствительны к перегреву и в прочих случаях.

При питании дуги переменным то­ком полярность тока многократно из­меняется соответственно числу пери­одов, т. е. 50 раз в секунду. Поэтому в сварочной дуге переменного тока по­ток электронов также будет менять свое направление, бомбардируя по­переменно то свариваемый металл, то коней электрода. В результате этого тепло между электродом и свари­ваемым металлом будет распреде­ляться равномерно.

Более экономичны источники пита­ния переменным током. Так, при руч­ной сварке на переменном токе рас­ход электроэнергии составляет 3 — 4 кВт-ч на 1 кг наплавленного метал­ла, а при сварке на постоянном токе 6 — 8 кВт-ч. Однако при постоянном токе электрическая дуга получается более стабильной и устойчивой.

В зависимости от материала элек­трода различают дуги между непла­вящимися электродами (угольными, вольфрамовыми) и плавящимися (металлическими)электродами.

Влияние кислорода, азота, водоро­да, серы и фосфора на свойства метал­ла шва. При сварке плавлением про­исходит взаимодействие между жид­ким и твердым металлами, газами и жидким шлаком, образующимся при расплавлении шлакообразующих ве­ществ, входящих в состав электрод­ных покрытий или флюса.

Основными реакциями, происхо­дящими в зоне сварки, являются ре­акции окисления и раскисления металла. Характерные условия метал­лургических реакций при сварке, как и при кристаллизации — высокая температура нагрева, относительно малый объем расплавленного метал­ла, кратковременность процесса.

Средняя температура капель элек­тродного металла, поступающих в ванну, увеличивается с увеличением плотности тока и составляет при сварке 2200 — 2700° С, т. е. характе­ризуется значительным перегревом. Температура сварочной ванны при дуговой сварке также характеризу­ется значительным превышением над точкой плавления, перегрев состав­ляет 100 — 500° С. Высокая темпера­тура способствует высокой скорости протекания реакций, однако из-за больших скоростей охлаждения ре­акции при сварке не успевают завер­шиться полностью.

Основными реакциями, происхо­дящими в зоне сварки, являются ре­акции окисления и раскисления металла. Кислород в атомарном состоя­нии образует с железом закись (FеО), окись (Fе2О3), а также закись-окись (Fе3О4). В жидком металле растворя­ется только закись железа. Осталь­ные окислы находятся в виде шлако­вых включений и всплывают на по­верхности сварочной ванны.

Кислород реагирует с металлом по реакции

где т и п — численные коэффициенты форму­лы химических реакций; Ме — масса элемента металла; О2 — масса кислорода.

Химические реакции протекают до состояния равновесия между исход­ными веществами и продуктами ре­акции. О состоянии равновесия мож­но судить по константе равновесия &.

Из закона действующих масс изве­стно, что

где МemО — соответственно содержание вмассе элемента Ме и кислорода в зоне реакции, %. Реакция окисления будет происхо­дить тем интенсивнее, чем больше произведение концентраций, вступа­ющих в реакцию веществ (в данной формуле значение числителя), по сравнению с равновесной. Если кон­станта будет меньше равновесной, идет реакция восстановления метал­ла из его окисла. Константа равнове­сия, выраженная через парциальное давление пара веществ, вступающих в реакцию,

Читайте также:  Инвертор для зарядки аккумуляторов шуруповерта

где рМе — парциальное давление веществ, вступающих в реакцию.

Наиболее сильным раскислителем является кремний и марганец. При окислении они дают соответственно окись кремния SiO2 и закись марган­ца МnО. Активным раскислителем является углерод. При сварочных температурах углерод образует окись СО. Кислород попадает в ме­талл шва в основном из воздуха при некачественной защите шва, из ржавчины и окалины при недостаточной зачистке свариваемой поверхно­сти или же из влаги при сварке сыры­ми электродами. Сильными раскислителями являются также титан, уг­лерод и алюминий.

Окружающий воздух является ис­точником попадания в наплавленный металл азота. При сварочных темпе­ратурах азот, переходя в атомарное состояние, хорошо растворяется в жидком металле сварочной ванны. Азот при охлаждении выделяется из раствора и при взаимодействии с ме­таллами образует нитриды: Fe2N, МnN, SiN и др., которые значительно снижают пластичность металла. Во­дород попадает в наплавленный ме­талл из влаги, содержащейся в элек­тродном покрытии, или из ржавчины на свариваемой поверхности, а также из флюса.

При кристаллизации металла шва водород, не успевая выделиться из металла, образует поры и мелкие трещины, а также «флокены» — де­фект в виде светлого пятна, видимый на поверхности излома.

Очень вредными примесями в на­плавленном металле являются сера и фосфор. Сера образует сернистое же­лезо FeS с низкой температурой плавления, равной 1193° С. При кри­сталлизации стали сернистое желе­зо, оставаясь в расплавленном состо­янии, распределяется между кри­сталлами, вызывая появление тре­щин. Фосфор, присутствуя в наплав­ленном металле в виде фосфидов же­леза Fe3S и Fe2S, резко снижает пла­стичность металла:

Кристаллизация металла шва. При охлаждении и затвердевании жидкого металла шва происходит его кристаллизация, т. е. образование кристаллитов из жидкой фазы. Кри­сталлиты представляют собой кри­сталлы неправильной формы. Про­цесс образования кристаллитов из жидкого расплавленного металла при переходе его в твердое состояние называется первичной кристаллиза­цией. Первичная кристаллизация на­чинается по условной границе сплавления (рис. 7.3), по линии 1 начала охлаждения сварочной ванны, при этом происходит зарождение центров кристаллизации и рост зерен 2. Вы­росшие зерна имеют различную фор­му и расположение. В том случае, ес­ли зерна не имеют определенной ори­ентации и напоминают форму много­гранника, структура гранулярная (зернистая). Она может быть крупно и мелкозернистой. Процесс измене­ния формы кристаллитов в металле, находящемся в твердом состоянии, носит название вторичной кристал­лизации. Если же зерна вытянуты в одном направлении, структура назы­вается столбчатой и дендритной. Крупнозернистое строение металла со столбчато-дендритной структурой характерно для медленного охлажде­ния.

Рис. 7.3. Первичная кристаллизация металла шва. Стрелки показывают направление отвода тепла

Конечная структура металла шва зависит в основном от способа свар­ки, условий ее проведения, а также химического состава основного и при­садочного металлов. Так, при ручной сварке электродом из низкоуглеро­дистой стали (содержание углерода до 0,2 %) металл шва имеет структу­ру с менее выраженной ориентиров­кой кристаллов и округлыми зернами феррита и перлита. При автоматической сварке этой же стали под флюсом, когда скорость охлаждения более медленная, чем при ручной сварке металлическим электродом, металл шва приобрета­ет столбчатодендритную структуру.

В околошовной зоне сварного соединения малоуглеродистой незака­ливающейся стали, выполненного способом плавления, имеются следу­ющие структурные участки (рис. 7.4); участок перегрева, температурны­ми границами которого являются со стороны шва температура, близкая к солидусу, а со стороны основного ме­талла температура 1100° С;

участок ‘нормализации; имеющий мелкозернистую структуру и повы­шенные свойства по сравнению с ис­ходной структурой;

участок неполной перекристалли­зации, находящейся в интервале тем­ператур от 725 до 850 ° С, при которых происходит частичная перекристал­лизация металла. Средние размеры зоны участков для некоторых видов сварки приведены в табл. 7.1.

Рис. 7.4. Структурные участки околошовной зо­ны в зависимости от удаленности от сварочного шва:

/ — зона малоуглеродистой незакаливающейся стали; // — зона за наливающейся легированной стали

В закаливающейся легированной стали участки располагаются в та кой последовательности по мере удале­ния от шва: закалки, частичной за­калки и отпуска.

Таблица.7.1. Размеры структурных участков околошовной зоны

Источник

Оцените статью
toolgir.ru
Adblock
detector