Как измерить частоту кварцевого резонатора мультиметром



Как проверить кварц на работоспособность, простая схема

Простой и надежный способ проверки кварцевых резонаторов на исправность, простая схема генератора для проверки кварцев. 90% неисправностей кварцевых резонаторов приходится на пульты дистанционного управления вот на них мы пока и остановимся. Я хочу предложить свой метод проверенный не раз.

На первом этапе не нужны вообще никакие приборы! Нам понадобитсялюбой радиоприёмник или на худой конец музыкальный центр если нет приёмника, но тогда к центру нужно подключитъ наружную антенну к разъёму СВ-КВ что не нужно делать с радиоприёмником по причине того, что там есть магнитная антенна.

Включаем на средние волны (СВ), можно и на короткие но там похуже, подносим пульт к приёмнику или к антенне музыкального центра, и нажимаем кнопки. В приёмнике мы услышим характерный звук импульсов, -значит кварцевый резонатор и микросхема с обвязкой в пульте уже исправны. После этого придётся раскрыть пульт и проверить светодиод.

Если в приёмнике мы ничего не слышим? Не хочу останавливаться на питании, думаю каждый с этого начинает любой ремонт. Выпаиваем аккуратно кварц, не перегревая его.

Теперь мы подошли к второму этапу непосредственно проверки кварцевого резонатора можно при помощи мультиметра 890 серии который очень распространён. Вставляем его в гнездо «Сх» и измеряем его ёмкость, при исправном резонаторе прибор покажет сотни пФ при неисправном единицы максимум десятки. Вот пример (частота резонатора — ёмкость на приборе) 440кГц-345пФ 500кГц-490пФ 4мГц-45пФ.

Опираться на эти значения как понимаете можно относительно так как погрешность у этого метода 10-15%. Но мы ведь с самого начала ставили цель проверить рабочий-нерабочий и не более.

Рис.1. Схема генератора для проверки кварцев.

Есть ещё один способ, он самый точный но нужно взятъ в руки паяльник и спаять очень простую схемку (рис.1) на микросхеме К155ЛАЗ. В схеме два резистора 330-670 Ом конденсатор любой. Вот собираем эту схемку и если к конденсатору подключим вход частотомера то узнаем частоту кварца с точностью, с которой измеряет Ваш частотомер.

А если частотомера нет тоже не огорчайтесь, возьмите всё тот же приёмник, к свободной ножке конденсатора прикрутите 0,5-1м провода, прообраз антенны, и слушайте на приемнике сигнал генератора в зависимости от частоты кварца на основной или 3 или 5 гармонике, то есть если у Вас, к примеру кварц на 440кГц то сигнал генератора Вы услышите на 440кГц,1320кГц и 2200кГц и так далее, это принцип кварцевого калибратора которые раньше стояли почти во всех военных радиоприёмниках.

Источник

Высокочастотный генератор для проверки кварцевых резонаторов

ПРОВЕРКА ДЛЯ КВАРЦЕВЫХ РЕЗОНАТОРОВ

С помощью этого пробника можно не только проверить работоспособность кварце­вого резонатора, но и определить его основ­ную резонансную частоту. Пробник представ­ляет собой типовую схему кварцевого гене­ратора на транзисторе. Кварцевый резонатор включается между базой транзистора и общим минусом. Конденсатор С1 служит для защиты от случая при коротком замыкании в неисправном кварцевом резонаторе. Хотя, такой уж большой необходимости в этом кон­денсаторе нет, и его можно убрать. Вообще, этот конденсатор здесь есть для того, чтобы данный пробник можно было использовать не только для проверки кварцев, но и для предварительной настройки LC-контуров.

При подключении резонатора схема пере­ходит в режим генерации и на эмиттере VT1 появляется переменное напряжение по частоте равное основной резонансной час­тоте проверяемого кварцевого резонатора. Подключенный частотомер покажет эту частоту. Частота должна быть стабильной и не изменяться существенно от легких ударов по корпусу резонатора или его небольшого нагрева (от поднесения к нему паяльника). Если резонатор не исправен генерации не будет или будет, но нестабильная или совсем не на той частоте.

Этот же пробник можно использовать и для предварительной настройки LC-контуров на необходимую частоту. Правда, при этом в схеме должен быть С1. Просто подключаете LC-контур вместо резонатора. Генератор начинает работать и генерировать частоту настройки контура. Далее, подогнать контур на нужную частоту можно соответствующей подстройкой его L и С параметров.

Читайте также:  Клей холодной сварки морозостойкий

Пробник хорошо работает на частотах до 15-20 МГц. На более высокой частоте генерация может и не возникнуть даже при исправном резонаторе.

Пробник для определения работоспособности кварцевых резонаторов. Он не меряет их рабочую частоту, а всего лишь определяет способность к резонансу и поддержанию колебаний.

Мы продолжаем публиковать цикл статей о проверке различных радиоэлементов, и сегодня рассмотрим проверенный тестер кварцев. У многих имеется немало различных кварцевых резонаторов (кварцев), которые трудно определить — рабочие они или нет. Обычным мультиметром их не померять, а при установке в собранную схему возникает подозрение — или устройство спаяли неправильно, или нерабочий сам кварц. Поэтому будет не лишним потратить немного времени и смастерить этот пробник, с высокой долей вероятности определяющий работоспособность кварцевых резонаторов на практически любые частоты.

Принципиальная схема пробника кварцевых резонаторов

На транзисторе VT1 собран генератор задающим частоту которого элементом является проверяемый кварцевый резонатор. Когда испытуемый кварц подключен, генератор запускается на частоте его основного резонанса (а ведь на некоторых пишут частоты гармоник). Сигнал от генератора проходит через конденсатор с3 (чтобы отфильтровать постоянную составляющую) и попадает на аналоговый частотомер переменного напряжения на элементах VD1, VD2, c4, R3 и микроамперметре. Это именно простейший аналоговый частотомер, так как в зависимости от частоты прямо пропорционально изменяется действующее на с4 напряжение, то есть чем выше частота резонанса кварца, тем выше на нём напряжение. Данным пробником можно не только определить работоспособность кварцевого резонатора, но и примерно определить частоту его основного резонанса, т.к. на некоторых пишут частоту гамоники (например третей). То есть на резонаторе, например, написано 27 Мгц, а реальная частота резонанса может оказатся 9МГц. Есть разница?


Этим пробником я успешно проверял многие кварцевые резонаторы на частоту от 3МГц до 25МГц. Схему собрал и испытал Андрей Жданов (Мастер665). Раздел: [Измерительная техника] Сохрани статью в: Оставь свой комментарий или вопрос:

Как работает кварцевый резонатор?

Из кристалла кварца вырезается пластинка, кольцо или брусок. На него наносится как минимум два электрода, которые являются проводящими полосками. Пластинка закрепляется и имеет свою собственную резонансную частоту механических колебаний. Когда на электроды подаётся напряжения, то из-за пьезоэлектрического эффекта происходит сжатие, сдвиг или изгибание (зависимо от того, как вырезался кварц). Колеблющийся кристалл в таких случаях делает работу подобно катушке индуктивности. Если частота напряжения, что подаётся, равна или очень близка к собственным значениям, то требуется меньшее количество энергии при значительных отличиях для поддержания функционирования. Теперь можно переходить к освещению главной проблемы, из-за чего, собственно, и пишется эта статья про кварцевый резонатор. Как проверить его работоспособность? Было отобрано 3 способа, о которых и будет рассказано.

Как проверить кварц на работоспособность, простая схема

Простой и надежный способ проверки кварцевых резонаторов на исправность, простая схема генератора для проверки кварцев. 90% неисправностей кварцевых резонаторов приходится на пульты дистанционного управления вот на них мы пока и остановимся. Я хочу предложить свой метод проверенный не раз.

На первом этапе не нужны вообще никакие приборы! Нам понадобитсялюбой радиоприёмник или на худой конец музыкальный центр если нет приёмника, но тогда к центру нужно подключитъ наружную антенну к разъёму СВ-КВ что не нужно делать с радиоприёмником по причине того, что там есть магнитная антенна.

Включаем на средние волны (СВ), можно и на короткие но там похуже, подносим пульт к приёмнику или к антенне музыкального центра, и нажимаем кнопки. В приёмнике мы услышим характерный звук импульсов, -значит кварцевый резонатор и микросхема с обвязкой в пульте уже исправны. После этого придётся раскрыть пульт и проверить светодиод.

Если в приёмнике мы ничего не слышим? Не хочу останавливаться на питании, думаю каждый с этого начинает любой ремонт. Выпаиваем аккуратно кварц, не перегревая его.

Теперь мы подошли к второму этапу непосредственно проверки кварцевого резонатора можно при помощи мультиметра 890 серии который очень распространён. Вставляем его в гнездо «Сх» и измеряем его ёмкость, при исправном резонаторе прибор покажет сотни пФ при неисправном единицы максимум десятки. Вот пример (частота резонатора — ёмкость на приборе) 440кГц-345пФ 500кГц-490пФ 4мГц-45пФ.

Читайте также:  Крепеж клипса для труб 20 мм промрукав черная 100 шт

Опираться на эти значения как понимаете можно относительно так как погрешность у этого метода 10-15%. Но мы ведь с самого начала ставили цель проверить рабочий-нерабочий и не более.

Рис.1. Схема генератора для проверки кварцев.

Есть ещё один способ, он самый точный но нужно взятъ в руки паяльник и спаять очень простую схемку (рис.1) на микросхеме К155ЛАЗ. В схеме два резистора 330-670 Ом конденсатор любой. Вот собираем эту схемку и если к конденсатору подключим вход частотомера то узнаем частоту кварца с точностью, с которой измеряет Ваш частотомер.

А если частотомера нет тоже не огорчайтесь, возьмите всё тот же приёмник, к свободной ножке конденсатора прикрутите 0,5-1м провода, прообраз антенны, и слушайте на приемнике сигнал генератора в зависимости от частоты кварца на основной или 3 или 5 гармонике, то есть если у Вас, к примеру кварц на 440кГц то сигнал генератора Вы услышите на 440кГц,1320кГц и 2200кГц и так далее, это принцип кварцевого калибратора которые раньше стояли почти во всех военных радиоприёмниках.

Желаю удачи в ремонте!

Куприн. В. Г. РК-2010-04.

Обозначение кварцевого резонатора на электросхеме

Схематичное изображение КР похоже на обозначение конденсатора, только между вертикальными линиями помещают прямоугольник. Эта фигура символизирует кварцевую пластинку. Обозначать прибор принято буквами «QX».


Обозначение на схеме кварцевого резонатора

Маркировка рабочей частоты нанесена на корпусе резонатора. Например, 12000 означает, что прибор работает в диапазоне 12 тыс. МГц.

Как работает кварцевый резонатор?

Из кристалла кварца вырезается пластинка, кольцо или брусок. На него наносится как минимум два электрода, которые являются проводящими полосками. Пластинка закрепляется и имеет свою собственную резонансную частоту механических колебаний. Когда на электроды подаётся напряжения, то из-за пьезоэлектрического эффекта происходит сжатие, сдвиг или изгибание (зависимо от того, как вырезался кварц). Колеблющийся кристалл в таких случаях делает работу подобно катушке индуктивности. Если частота напряжения, что подаётся, равна или очень близка к собственным значениям, то требуется меньшее количество энергии при значительных отличиях для поддержания функционирования. Теперь можно переходить к освещению главной проблемы, из-за чего, собственно, и пишется эта статья про кварцевый резонатор. Как проверить его работоспособность? Было отобрано 3 способа, о которых и будет рассказано.

Устройство для проверки кварцевых резонаторов

Предлагаемая радиолюбителям для повторения конструкция предназначена для проверки кварцевых и пьезокерамических резонаторов, а также как управляемый генератор частот до 80 МГц.

На интегральной микросхеме DD1 типа КР531ГГ1 построен задающий генератор. Эта микросхема представляет собой два управляемых генератора, частота работы которых задается подключенными к ее выводам С1, С2 кварцевыми, пьезокерамическими резонаторами или конденсаторами. В этом устройстве используется только один генератор этой микросхемы. Подключенный к выводам С1, С2 резистор R1 облегчает запуск генератора с резонаторами с рабочей частотой менее 4 МГц. Все проверяемые резонаторы будут возбуждаться на частоте основного резонанса — первой гармонике. Это следует учитывать при проверке резонаторов, предназначенных для работы в радиоприемных и радиопередающих устройствах. Например, гармониковые кварцы на частоту 27 МГц (третья гармоника) будут возбуждаться на частоте 9 МГц.

На микросхеме DD2 собран делитель частоты на 2 и 4. Сигнал высокой частоты с выхода F DD1.1 через резистор R1 поступает на вход С D-триггера DD2.1, включенным делителем частоты на 2, с выхода этого триггера сигнал с частотой вдвое меньшей частоты задающего генератора поступает на второй D-триггер DD2.1, включенным аналогичным образом. В итоге, на выходе делителя частоты получается сигнал с частотой в 4 раза меньшей частоты задающего генератора. Светодиод HL2 сигнализирует своим свечением то, что проверяемый резонатор возбуждается. Микросхема DD3 используется в качестве буферных элементов, что устраняет влияние подключенной нагрузки на стабильность работы DD1, DD2. К прибору для контроля частоты можно подключить частотомер, способный измерять сигналы с частотой не менее 80 МГц. На частотомер можно подавать сигнал как с частотой работы задающего генератора DD1, так и с частотой вдвое или вчетверо меньшей, что может быть полезным при использовании выносного щупа частотомера и соединительного кабеля с недостаточной полосой пропускания. Все примененные интегральные цифровые микросхемы получают питание от источника стабильного напряжения, построенного на стабилизаторе DA1. При возбуждении генератора на частоте 48 МГц устройство потребляет от источника питания ток около 90 мА. Светодиод HL1 сигнализирует о наличии напряжения питания. Диод VD1 защищает устройство от подачи напряжения питания обратной полярности.

Читайте также:  Аргонная сварка подача проволоки

В авторском варианте монтаж элементов выполнен навесным способом тонким монтажным проводом, при этом весь слой фольги используется как общий провод. Следует заметить, что разводка цепей питания и сигнальных цепей требует аккуратности и понимания, поскольку микросхемы серий КР531, 74F весьма высокочастотны и при неудачном монтаже могут генерировать помехи с широким спектром частот.

Детали. Вместо микросхемы КР531ГГ1 можно применить КР1531ГГ1, К531ГГ1П. Возможно, существует импортный аналог из серии 74F124N. Импортную микросхему MC74F74N можно заменить любой из серии 74F74N или отечественной КР531ТМ2. Немного изменив принципиальную схему, можно на месте этой микросхемы установить делитель на 10, например, собранный на микросхеме КР531ИЕ9, 74F160N с любым префиксом. Можно использовать и другие ТТЛ или КМОП делители частоты, способные работать на частоте не менее 80 МГц при напряжении питания +5 В. Микросхему MC74F00N можно заменить любой из серии 74F00N или отечественной КР531ЛАЗ, КР1531ЛАЗ. При применении отечественных микросхем потребляемый устройством ток может немного возрасти. Если не удастся приобрести такие микросхемы, то можно временно вместо DD2 и DD3 установить соответствующие микросхемы серии КР1533, при этом рабочий диапазон частот устройства снизится до 50…70 МГц. Вместо интегрального стабилизатора на фиксированное выходное напряжение +5 В типа L7805ACV можно установить любой из серии 7805 в корпусе ТО-220 или отечественную ИМС КР142ЕН5А, КР142ЕН5В. При использовании некоторых стабилизаторов нижняя граница минимального напряжения питания может увеличиться с 7 В до 8 В. Микросхему стабилизатора напряжения устанавливают на небольшой теплоотвод. Диод 1N4001 можно заменить любым из серий 1 N4001-1 N4007, КД243, КД226. Вместо диодов 1N4148 подойдут диоды серий КД503, КД409, 2Д419. Светодиоды подойдут любого типа общего применения.

Оксидные конденсаторы К50-35, К53-19, К53-30 или импортные аналоги. Неполярные конденсаторы — керамические К10-17 или аналогичные импортные. Резисторы любого типа малогабаритные, например С1-4, С2-23, МЛТ. Для проверки резонаторов с разным диаметром выводов установлены две различные панельки. Длина проводников от выводов С1, С2 DD1 должна быть как можно короче. Если вместо резонатора ZQ1 к панелькам подключить малогабаритный переменный конденсатор емкостью 20…540 пФ, то частоту работы генератора можно изменять от 12 МГц до 760 кГц. Устройство можно усовершенствовать, если на место ZQ1 будет подключен частотозадающий конденсатор, вход Е DD1.2 соединяется с общим проводом, выход F DD1.2 соединяется с входом Uд или Uc DD1.1, к выводам 12 и 13 DD1 подключают конденсатор емкостью 0,22 мкФ. После всего этого генератор DD1.2 будет работать на частоте 2 кГц, а на выходе F DD1.1, вывод 7, будет частотно модулированный сигнал. Кроме того, на входы Uд, Uc можно одновременно подавать противофазные модулирующие сигналы, например, с выхода F DD1.1 и выхода инвертора DD3.1. Для уменьшения девиации частоты модулирующие сигналы можно подавать через подстроечные резисторы сопротивлением по 220…470 Ом. В качестве резонаторов можно использовать не только кварцевые или пьезокерамические резонаторы, но и пьезокерамические фильтры, например генератор, очень хорошо возбуждается с фильтрами на 10,7 МГц от УКВ радиоприемников. Устройство можно использовать не только для проверки резонаторов, но и как калибратор, микропередатчик, генератор звуковых эффектов, измеритель емкости конденсаторов. Область применения микросхемы КР531ГГ1 не ограничивается только рассказанными в этой статье вариантами, а дешевизна и доступность этой микросхемы позволяет провести с ней множество экспериментов, что способствует разнообразию радиолюбительских будней и расширению интересов.

Источник

Оцените статью
toolgir.ru
Adblock
detector