Кпд номинального режима трансформатора



Режимы работы трансформатора. Потери и К.П.Д. трансформатора.

Тема 3.1: ТРАНСФОРМАТОРЫ

Назначение трансформаторов и их применение

Устройство трансформатора

Принцип действия однофазного трансформатора.

Режимы работы трансформатора. Потери и К.П.Д. трансформатора.

1. Трансформатор предназначен для преобразования переменного тока одного напряжения в переменный ток другого напряжения. Увеличение напряжения осуществляется с помощью повышающих трансформаторов, уменьшение — понижающих.

Трансформаторы применяют в линиях электропередачи, в технике связи, в автоматике, измерительной технике и других областях.

В соответствии с назначением различают: силовые трансформаторы для питания электрических двигателей и осветительных сетей; специальные трансформаторы для питания сварочных аппаратов, электропечей и других потребителей особого назначения; измерительные трансформаторы для подключения измерительных приборов.

По числу фаз трансформаторы делятся на одно- и трехфазные. Трансформаторы, используемые в технике связи, подразделяют на низко- и высокочастотные.

Расчетные мощности трансформаторов различны — от долей вольт-ампер до десятков тысяч киловольт-ампер; рабочие частоты — от единиц герц до сотен килогерц.

Трансформатор — простой, надежный и экономичный электрический аппарат. Он не имеет движущихся частей и скользящих контактных соединений, его КПД достигает 99%. КПД трансформатора, определяемый как отношение мощности на выходе Р2 к мощности на входе P1, зависит от нагрузки. Современные трансформаторы рассчитывают таким образом, что максимум КПД достигается при нагрузке, равной примерно половине номинального значения.

2 Трансформатор представляет собой замкнутый магнитопровод, на котором расположены две или несколько обмоток. В маломощных высокочастотных трансформаторах, используемых в радиотехнических схемах, магнитопроводом может являться воздушная среда.

Для уменьшения потерь на гистерезис магнитопровод изготовляют из магнитомягкого материала — трансформаторной стали, имеющей узкую петлю намагничивания. Для уменьшения потерь на вихревые токи в материал магнитопровода вводят примесь кремния, повышающую его электрическое сопротивление, а сам магнитопровод собирают из отдельных листов электротехнической стали толщиной 0,35–0,5 мм, изолированных друг от друга теплостойким лаком или специальной бумагой.

Различают трансформаторы стержневого (рис. 1, а) и броневого (рис. 1, б) типов. Последний хорошо защищает обмотки катушек от механических повреждений. Верхнюю часть магнитопровода, называемую ярмом, крепят после насадки на стержень катушек (обмоток). Стержни и ярмо соединяют очень плотно, чтобы исключить воздушные зазоры на стыках. В маломощных трансформаторах находят широкое применение кольцевые магнитопроводы, которые собирают из штампованных колец или навивают из длинной ленты. В этих магнитопроводах отсутствует воздушный зазор, поэтому магнитный поток рассеяния мал. В трансформаторах, рассчитанных на повышенные частоты, кольцевые магнитопроводы часто прессуют из ферромагнитного порошка, смешанного с изоляционным лаком.

Обмотки трансформаторов изготовляют из медного провода и располагают на одном и том же или на разных стержнях, рядом или одну под другой. В последнем случае непосредственно к стержню примыкает обмотка низшего напряжения, а поверх нее размещается обмотка высшего напряжения.

Читайте также:  Аккумуляторные батареи для шуруповертов девольт

Обмотку трансформатора, к которой подводится напряжение питающей сети, называют первичной, а обмотку, к которой подсоединяется нагрузка,— вторичной. На сердечнике может быть размещено несколько вторичных обмоток с разным числом витков, что позволяет получить различные по значению вторичные напряжения.

При работе трансформатора за счет токов в об­мотках, а также вследствие перемагничивания магни­топровода и вихревых токов выделяется теплота. Трансформаторы небольшой мощности (до 10 кВА), для которых достаточно воздушного охлаждения, называют сухими.

В мощных трансформаторах применяют масляное охлаждение (рис. .2). Магнитопровод 1 с обмотками 2, 3 размещается в баке 4, заполненном минеральным (трансформаторным) маслом. Масло не только отводит теплоту за счет конвекции или принудительной циркуляции, но и является хорошим диэлектриком (изолятором). Масляные трансформаторы надежны в работе и имеют меньшие размеры и массу по сравнению с сухими трансформаторами той же мощности. При изменении температуры объем масла меняется. При повышении температуры излишек масла погло­щается расширителем 5, а при понижении температуры масло из расширителя возвращается в основной бак.

В тех случаях, когда требуется плавно изменять вторичное напряжение, применяют скользящий контакт для изменения числа витков обмотки (примерно так же, как это делается в ползунковых реостатах). Скользящий контакт широко используется в автотрансформаторах, рассчитанных на регулирование напряжения в небольших пределах (рис. 3).

3. Работа трансформатора основана на явлении взаимной индукции, которое является следствием закона электромагнитной индукции.

Рассмотрим более подробно сущность процесса трансформации тока и напряжения в однофазном трансформаторе, принципиальная схема которого представлена на рис.4.

При подключении первичной обмотки трансформа­тора к сети переменного тока напряжением U1 по обмотке; начнет проходить ток I1 (рис. 4), который создаст в магнитопроводе переменный магнитный поток Ф. Магнитный поток, пронизывая витки вторичной обмотки, индуцирует в ней ЭДС E2, которую можно использовать для питания нагрузки.

Поскольку первичная и вторичная обмотки транс форматора пронизываются одним и тем же магнитным потоком Ф, выражения индуцируемых в обмотке ЭДС можно записать в виде

где f — частота переменного тока; w1, w2 — число витков обмоток.

Поделив одно равенство на другое, получим .

Отношение чисел витков обмоток трансформатора называют коэффициентом трансформации k.

Таким образом, коэффициент трансформации показывает, как относятся действующие значения ЭДС вторичной и первичной обмоток.

На основании закона электромагнитной индукции можно написать

Поделив одно равенство на другое, получим

Следовательно, в любой момент времени отношение мгновенных значений ЭДС вторичной и первичной обмоток равно коэффициенту трансформации. Нетрудно понять, что это возможно только при полном совпадении по фазе ЭДС е1 и е2.

Читайте также:  Для чего нужен токовый трансформатор

Если цепь вторичной обмотки трансформатора разомкнута (режим холостого хода), то напряжение на зажимах обмотки равно ее ЭДС: U2=E2, а напряжение источника питания почти полностью уравновешивается ЭДС первичной обмотки U=E1. Следовательно, можно написать, что .

Таким образом, коэффициент трансформации может быть определен на основании измерений напряжения на входе и выходе ненагруженного трансформатора. Отношение напряжений на обмотках недогруженного трансформатора указывается в его паспорте.

Учитывая высокий КПД трансформатора, можно полагать, что , где — мощность, потребляемая из сети; — мощность, отдаваемая в нагрузку.

Таким образом, , откуда

Отношение токов первичной и вторичной обмоток приближенно равно коэффициенту трансформации, поэтому ток I2 во столько раз увеличивается (уменьшается), во сколько раз уменьшается (увеличивается) U2.

4 РЕЖИМЫ РАБОТЫ ТРАНСФОРМАТОРА

Существует пять характерных режимов работы трансформатора:

1. Рабочий режим;

2. Номинальный режим;

3. Оптимальный режим;

4. Режим холостого хода;

5. Режим короткого замыкания.

РАБОЧИЙ РЕЖИМ характеризуется следующими признаками:

Напряжение первичной обмотки близко к номинальному значению или равно ему U1≈U1ном;

Ток первичной обмотки меньше своего номинального значения или равен ему I1≤I1ном.

В рабочем режиме эксплуатируются большинство трансформаторов. Например, силовые трансформаторы работают с напряжениями и токами обмоток отличными от номинальных. Так происходит из-за переменчивого характера их нагрузки.

Измерительные, импульсные, сварочные, разделительные, выпрямительные, вольтодобавочные и другие трансформаторы, также обычно эксплуатируются в рабочем режиме просто из-за того, что напряжение сети к которой они подключены отличается от номинального.

НОМИНАЛЬНЫЙ РЕЖИМ — характерные признаки:

Напряжение первичной обмотки равно номинальному U1=U1ном;

Ток первичной обмотки равен номинальному I1=I1ном.

Номинальный режим работы является частным случаем рабочего режима. В таком режиме могут работать все трансформаторы, но, как правило, с бóльшими в сравнении с рабочим режимом потерями и как следствие, с меньшим КПД (коэффициентом полезного действия). Из-за этого при эксплуатации трансформатора его избегают.

ОПТИМАЛЬНЫЙ РЕЖИМ РАБОТЫ характеризуется условием:

(1)

где Pхх — потери холостого хода;

Pкз — потери короткого замыкания;

kнг — коэффициент нагрузки трансформатора, определяемый по формуле:

(2)

где I2 — ток нагрузки вторичной обмотки;

I2ном — номинальный ток вторичной обмотки.

В оптимальном режиме работы трансформатор работает с максимальным КПД, поэтому выражение (1) по существу представляет собой условие максимального КПД.

РЕЖИМ ХОЛОСТОГО ХОДА — характерные признаки:

Вторичная обмотка трансформатора разомкнута или к ней подключена нагрузка с сопротивлением гораздо большим сопротивления номинальной нагрузки обмотки трансформатора;

К первичной обмотке приложено напряжение U1хх= U1ном;

Ток вторичной обмотки I2≈0.

РЕЖИМ КОРОТКОГО ЗАМЫКАНИЯ характеризуется:

Вторичная обмотка замкнута накоротко или к ней подключена нагрузка сопротивлением гораздо меньшим внутреннего сопротивления трансформатора;

Читайте также:  Кто работал плазменной сваркой

К первичной обмотке приложена такая величина напряжения U1, что ток первичной обмотки равен её номинальному току I 1= I 1ном.

Напряжение вторичной обмотки U2=0.

Режим короткого замыкания является рабочим режимом для трансформаторов тока и сварочных трансформаторов, в тоже время являясь аварийным для других трансформаторов.

В процессе трансформирования электрической энергии часть энергии теряется в трансформаторе на покрытие потерь. Эти потери разделяются на электрические и магнитные:

1). Электрические потери обусловлены нагревом обмоток трансформатора при прохождении по ним электрического тока. Их мощность Рэ равна сумме потерь в первичной обмотке Рэ1 и во вторичной обмотке Рэ2:

Электрические потери называют переменными, т. к. их величина зависит от нагрузки трансформатора. При номинальном токе для мощных трансформаторов они обычно составляют (0,5÷2)% номинальной мощности. Уменьшение электрических потерь достигается соответствующим выбором площади сечения проводов обмоток трансформатора (снижение электрических потерь в проводах).

2). Магнитные потери происходят главным образом в магнитопроводе трансформатора. Причина этих потерь — систематическое перемагничивание магнитопровода переменным магнитным полем. Их мощность Рм равна сумме потерь от гистерезиса Рг и от вихревых токов Рв.т.

Магнитные потери для мощных трансформаторов составляют (0,3÷0,5)% номинальной мощности. С целью уменьшения магнитных потерь магнитопровод трансформатора изготовляют из электротехнической стали (снижение потерь от перемагничивания) и делают его шихтованным в виде пакетов из тонких пластин, изолированных с двух сторон (снижение потерь от вихревых токов).

Коэффициент полезного действия (КПД) трансформатора определяется как отношение активной мощности на выходе вторичной обмотки Р2 (полезная мощность) к активной мощности на входе первичной обмотки Р1 (подводимая мощность):

Благодаря отсутствию в трансформаторе вращающихся и трущихся деталей потери энергии в нём по сравнению с вращающимися машинами малы, а КПД высок и достигает в трансформаторах большой мощности (0,98÷0,99). В трансформаторах малой мощности КПД достигает (0,5÷0,7). Максимальное значение КПД трансформатор имеет при такой нагрузке, когда электрические потери Рэ равны магнитным потерям Рм.

Рекомендуем для прочтения:

ИСТОЧНИКИ ГРАЖДАНСКОГО ПРАВА И ГРАЖДАНСКОЕ ЗАКОНОДАТЕЛЬСТВО Понятие источников гражданского права и гражданского законодательства.
Маркетинговая стратегия предприятия Маркетинговая стратегия — это элемент общей стратегии компании (корпоративной стратегии).
ВИДЫ ТАЙН Тайна, основным содержанием которой являются сведения (информация), по характеру сведений относится к сведениям с ограниченным.
Эволюция пищеварительной системы Происхождение и функция пищеварительной системы. Развитие пищеварительной системы у многоклеточных животных осуществляется в основном.
Момент импульса. Момент силы. Закон сохранения момента импульса. Изменение импульса. Моме?нт и?мпульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество.

Источник

Оцените статью
toolgir.ru
Adblock
detector