Векторная диаграмма трехфазного двухобмоточного трансформатора



Группы соединения трансформаторов

Мы уже рассмотрели соединение трансформаторов в треугольник, звезду и зигзаг. Теперь остановимся более подробно на группах соединения трансформаторов. Обмотки низкого, среднего и высокого напряжения трансформаторов могут соединяться по-разному – в треугольник, звезду, реже зигзаг, образуя схему соединения обмоток трансформатора.

Схема соединения – это сочетание схем соединения обмоток высшего и низшего напряжения для двухобмоточного трансформатора или обмоток высшего, среднего и низшего для трехобмоточного трансформатора. Однако, несмотря на различное соединение обмоток, схемы могут давать одинаковый сдвиг между одноименными векторами напряжения. Несколько схем, дающих одинаковый по величине угол сдвига фаз, образуют группу соединения.

Основных групп может быть 12. Для удобства представляют циферблат стрелочных часов. Каждой группе соответствует угол кратный 30 градусам от 0 до 360 градусов. Они отмечаются на циферблате часов, через один час, каждому часу соответствует сдвиг в 30 градусов. 360 градусов – 12 часов.

Групп 12 и имеется следующая закономерность – четные группы (2,4,6,8,10,12) образуются, если с высокой и низкой стороны одинаковое соединение (треугольник-треугольник, звезда-звезда). Нечетные группы (1,3,5,7,9,11) образуются, если с высокой и низкой сторон различное соединение (треугольник-звезда).

В ГОСТ 30830-2002 пишется, что вектор фазы А ВН откладывается параллельно и сонаправленно стрелке на 12 часов. Порядок фаз идет А-В-С, движение векторов на циферблате осуществляется против часовой стрелки.

Чтобы построить треугольник, сначала надо построить звезду, а потом вписать ее в треугольник.

Вот, например, двухобмоточный трехфазный трансформатор со схемой Y/Д-11, для примера. Где Y-значит звезда с высокой стороны, Д-треугольник с низкой стороны, между ними угол 360 градусов.

Если трансформатор трехобмоточный, то может быть (возьмем ради примера) Y0/Y/Д-12-5. Все как и в прошлом примере, только добавилась обмотка среднего напряжения. В этом примере обмотка ВН – звезда с нулем, СН – звезда, НН – треугольник. Сдвиг между обмотками ВН и СН – 12 часов, между ВН и НН – 11 часов (или 0 часов). Между СН и НН – 11 часов, про это писалось выше.

Существуют определенные действия с выводами обмоток, выполнив которые, можно добиться определенного результата группами трансформаторов.

  • если по-порядку циклически перемаркировать фазы А-В-С(а-b-c) на В-С-А(b-c-a), то группа изменится на 4 (как в большую, так и в меньшую сторону)
  • двойная перемаркировка двух фаз, на стороне ВН и НН, изменяют нечетную группу на плюс минус 2
  • если поменять местами две фазы на одной из сторон (ВН или НН), то трансформатор потеряет группу и его запрещено будет включать на параллельную работу с другим трансформатором
Читайте также:  Как подключить строчный трансформатор от телевизора

Схемы групп соединения обмоток 3ф. 2обм. трансформаторов

Существует огромное множество схем соединения обмоток, некоторые из них образуют группы соединения трансформаторов. Рассмотрим некоторые из них, а именно схемы со звездой и треугольником с группами от 1 до 12.

Также схематично представим обозначения вводов на крышке трансформатора и векторные диаграммы.

12 группа (Y/Y-12, Д/Д-12)

Рисунок 1 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 12

11 группа (Y/Д-11, Д/Y-11)

Рисунок 2 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 11

10 группа (Д/Д-10, Y/Y-10)

Рисунок 3 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 10

9 группа (Y/Д-9, Д/Y-9)

Рисунок 4 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 9

8 группа (Y/Y-8, Д/Д-8)

Рисунок 5 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 8

7 группа (Y/Д-7, Д/Y-7)

Рисунок 6 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 7

6 группа (Y/Y-6, Д/Д-6)

Рисунок 7 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 6

5 группа (Y/Д-5, Д/Y-5)

Рисунок 8 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 5

4 группа (Y/Y-4, Д/Д-4)

Рисунок 9 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 4

3 группа (Y/Д-3, Д/Y-3)

Рисунок 10 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 3

2 группа (Y/Y-2, Д/Д-2)

Рисунок 11 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 2

1 группа (Y/Д-1, Д/Y-1)

Рисунок 12 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 1

Читайте также:  Контроллер для точечной сварки ny d02x 100a

Укажем некоторые особенности отдельных схем:

Схема Y0/Y-12 получается из схемы Y/Y-12 соединением нулевого ввода трансформатора с нейтралью звезды;

Схема Д/Д-12 – обе обмотки выполнены левыми, если же одну из обмоток выполнить правой, то выйдет схема Д/Д-6.

Схема Д/Д-10 – обе обмотки левые, если одну из обмоток выполнить правой, то получится схема Д/Д-4;

Схему Д/Д-8 можно получить, если в схеме Д/Д-2 одну из обмоток выполнить правой.

Схему Y/Д-5 можно получить, если в схеме Y/Д-11 одну из обмоток выполнить правой, а вторую левой.

Далеко не все из представленных схем широко распространены, однако, их знание не будет лишним.

Источник

4.7. Векторная диаграмма рабочего режима трансформатора.

Векторная диаграмма рабочего режима трансформатора (рис.4.9) строится в следующей последовательности.

1) За базисный (основной) вектор принимается вектор рабочего магнитного потока Ф.

2)Направление е ЭДС Е1 и Е2 откладывают от направления вектора Ф под углом – 90 о

3) Вектор приведенного вторичного тока откладывают от направления е в сторону отставания под углом

Рис. 4.9. Векторная диаграмма трансформатора в рабочем режиме

4) Вектор приведенного вторичного напряжения откладывают от векторапод углом φН в сторону опережения (рассматриваем случай активно-индуктивной R-L нагрузки, при которой напряжение опережает ток)

φн=arctg

5) Величину вектора приведенной вторичной ЭДС =E1 определяют по уравнению равновесия напряжений вторичной обмотки:

Для этого из конца вектора строят векторпараллельно вектору, а затем из конца этого вектора откладывают вектор в сторону опережения на 90 о до пересечения с направлением е.

6) Строят вектор тока холостого хода I, опережающий вектор магнитного потока Ф на угол магнитных потерь α (обычно 4-6 о ).

7) Вектор тока первичной обмотки I1 находят по первому закону Кирхгофа

8) Напряжение U1, приложенное к первичной обмотке, находят по уравнению равновесия напряжений для этой обмотки

При этом вектор I1R1 проводится из конца вектора –Е1, противоположного вектору Е1, параллельно вектору I1, а вектор I1Х1 под углом 90 0 к вектору I1R1 в сторону опережения.

9) Строят вектора магнитных потоков рассеяния Фδ1 и Фδ2, совпадающие по фазе с соответствующими токами I1 и 2.

Читайте также:  Доска для рыбы с зажимом доска разделочная для рыбы

4.8. Коэффициент полезного действия трансформатора.

При передаче электрической энергии трансформатором происходят потери активной электрической мощности ∆Р, состоящие из потерь в сердечнике (в стали) ∆РС, и потерь в проводах обмоток (в меди) ∆РМ.

Обычно, у мощных трансформаторов общая величина потерь довольно мала (∆Р 13% РНОМ) и его КПД == 98 — 99%,

где Р1 – мощность, потребляемая из сети, Р2 – полезная мощность трансформатора.

Вследствие незначительности потерь определение КПД трансформатора как отношения мощностей Р2 к Р1 затруднено, т.к. при измерении этих мощностей погрешность измерений оказывается сравнимой с величиной потерь в трансформаторе.

Поэтому, КПД трансформатора определяют косвенным путем по данным потерь мощности, измеряемых в опытых холостого хода Р и короткого замыкания РК с учетом коэффициента загрузки трансформатора ,

гдеI2 – величина тока вторичной обмотки при фактической нагрузке трансформатора в рабочем режиме;

I2 ном – номинальный ток вторичной обмотки;

где Р2НОМ – номинальная активная мощность трансформатора;

Р = ∆РС НОМ –номинальные потери в сердечнике (потери в стали), определяемые в опыте холостого хода. Это постоянные потери, не зависящие от коэффициента загрузки трансформатора.

РК = ∆РМ НОМ – номинальные потери в обмотках трансформатора (потери в меди), определяемые в опыте короткого замыкания.

Поскольку потери в меди ∆РМ пропорциональны квадрату тока и следовательно – квадрату коэффициента загрузки, их величину в любом режиме можно определить через номинальные потери и коэффициент загрузки: ∆Рм = 2 ∆Рмном = 2 РК

Паспортную номинальную мощность трансформатора задают через полную мощность S2ном, т.к. выбор трансформатора производится по требуемой полной мощности, т.е. с учетом коэффициента мощности нагрузки cosφн, который для различных потребителей может сильно различаться даже при одинаковой активной мощности.

Поэтому обычно КПД трансформатора выражают через полную мощность

где S2ном – полная номинальная мощность трансформатора;

cos— коэффициент мощности нагрузки (потребителя);

S2ном cos= Р2ном – номинальная активная мощность трансформатора.

Для того, чтобы трансформатор при длительной работе в номинальном режиме не перегревался, выбор мощности трансформатора производят по условию S2ном Sн =

где Sн и Рн – полная и активная мощности, потребителя.

Источник

Оцените статью
toolgir.ru
Adblock
detector