Защитная среда жидкого металла сварочной ванны при ручной дуговой сварке



Защита сварочной ванны от воздействия окружающей среды

СЛАЙД 2 Расширение применения сварочных технологий в промышленности стало возможным после разработки надежных методов защиты зоны сварки от воздействия с окружающей средой – воздухом и водой. Применение сварки при подводнотехнических работах имеет специфические особенности и поэтому не рассматривается.

Как уже отмечалось сварка плавлением это высокотемпературный процесс, который сопровождается изменением состава металла сварочной ванны при взаимодействии с кислородом, азотом, парами воды и другими компонентами воздуха. Высокая реакционная активность расплавляемых металлов приводит к образованию оксидов, нитридов и гидридов, значительно ухудшающих состав и свойства металла сварного шва.

При сварке трубопроводов и конструкций используется четыре основных способа защиты сварочной ванны от вредного воздействия окружающей воздушной среды:

Вакуумная защита применяется при сварке конструкций из титана, молибдена, ванадия и других химически активных и тугоплавких металлов и поэтому в дальнейшем рассматриваться не будет.

Шлаковая защита

СЛАЙД 3 При автоматической и механизированной (полуавтоматической) сварке под слоем флюса применяется шлаковая защита зоны сварки (рис 1).

Рис. 1 Схема механизированной сварки под слоем флюса:

1 – свариваемый основной металл; 2 – подающие ролики; 3 – электродная проволока; 4 – слой гранулированного флюса; 5 – шлак; 6 – сварной шов; 7 – сварочная ванна; 8 – дуговой разряд СЛАЙД 4

Электрический дуговой разряд, перемещаемый вдоль свариваемого шва механическим устройством, поддерживается в замкнутом пространстве в среде расплавленного флюса и флюса в полужидком состоянии, причем газы дуговой атмосферы – пары металла и компонентов флюса – поддерживают давление внутри полости выше, чем давление окружающей атмосферы. Дуговая сварка под слоем флюса – высокопроизводительный процесс, обеспечивающий хорошее формирование сварного шва.

СЛАЙД 5 Состав флюса подбирается таким образом, чтобы образующийся шлак при плавлении и последующем застывании легко отделялся от поверхности сварного соединения.

В основном применяются плавленые и керамические флюсы.

СЛАЙД 6 Плавленые получаются сплавлением входящих в них компонентов в электрических или пламенных печах и гранулируются выливанием в воду.

Керамические флюсы получаются путем грануляции замеса из тонкоизмельченных компонентов, соединенных между собой жидким стеклом. В отличие от плавленых в керамических флюсах могут содержаться металлические порошки – раскислители и легирующие компоненты, так как в процессе приготовления керамические флюсы не подвергаются нагреву до высоких температур.

СЛАЙД 7 Наибольшее распространение в производстве получили плавленые флюсы различных марок, изготовляемые в крупных промышленных масштабах. Плавленые флюсы по своему составу и назначению делятся на алюмосиликатные, предназначенные для сварки сталей различных марок, и фторидные, предназначенные для сварки титановых сплавов. Алюмосиликатные флюсы выбираются по составу в зависимости от марки стали, так как при взаимодействии со шлаком состав металла сварочной ванны может изменяться.

СЛАЙД 8 Классификация флюсов производится также по физическим свойствам: по структуре зерна они делятся на стекловидные и пемзовидные, по характеру изменения вязкости – на длинные и короткие, по характеру взаимодействия с металлом – на активные и пассивные. Пассивные применяются в основном при сварке среднелегированных сталей.

СЛАЙД 9 При дуговой сварке под слоем плавленого флюса различают: высокотемпературную зону, охватывающую плавящийся торец электрода, капли металла, проходящие дуговой промежуток и активное пятно дугового разряда в сварочной ванне; и низкотемпературную зону – хвостовая часть ванны, где температура приближается к температуре кристаллизации металла.

В высокотемпературной зоне интенсивно развиваются эндотермические реакции, приводящие к легированию и одновременно к окислению металла сварочной ванны компонентами флюса. В этой же зоне происходит интенсивное окисление углерода стали и восстановление кремния марганцем.

Интенсивное перемешивание шлака с металлом приводит к извлечению значительной части FeO в шлаковую фазу.

При сварке под флюсом почти не происходят потери металла и оценить изменения химического состава металла шва можно по исходному составу. По шлифу сварного шва можно определить его площадь и, зная разделку под сварку можно найти соотношение количеств расплавленного основного металла и наплавленного электродного металла, а затем, зная состав проволоки и состав основного металла, находят исходный состав, предполагая, что никаких химических реакций не было.

СЛАЙД 10 Керамические флюсы для сварки металлов позволяют сохранять все преимущества автоматической сварки под слоем флюса: малые потери металла, высокая производительность, высокое качество сварных соединений, но в то же время позволяют легировать и раскислять металл сварочной ванны в очень широких пределах. Керамические флюсы представляют собой порошки различных компонентов, образующих шлаковую фазу, изолирующую металл от окисления, и ферросплавы или свободные металлы для раскисления и легирования. Все эти порошковые материалы замешивают на растворе силиката натрия Na2SiO3 (жидкое стекло) и подвергают грануляции на специальных устройствах. После этого их просушивают, прокаливают для удаления влаги и хранят в герметической таре. Так как в процессе изготовления они не подвергаются нагреву, то все даже активные металлы в них сохранены и при плавлении флюса они переходят в металл шва, раскисляя его и легируя до нужного состава.

СЛАЙД 11 По назначению различают керамические флюсы для сварки и наплавки углеродистых и легированных сталей, цветных металлов и сплавов. По химическому составу шлакообразующей массы флюсы могут быть отнесены к кислым, нейтральным и основным. Кроме того, их делят на несколько типов: марганцово-силикатные, кальций-силикатные и флюоритно-основные и др.

По степени легирования металла шва керамические флюсы делятся на слабо легирующие для сварки низкоуглеродистых и низколегированных и сильно легирующие для сварки специальных сталей.

Основной недостаток керамических флюсов состоит в том, что они обладают повышенной гигроскопичностью, что требует хранения их в герметичной таре и прокалки перед сваркой. Наличие гидратной влаги в флюсе приводит к повышению содержания водорода в наплавленном металле, что ухудшает его свойства.

Источник

2. Способы защиты сварочной ванны при дуговой сварке.

Дуговая сварка – это высокотемпературный процесс, сопровождающийся изменением состава металла, сварного соединения, а следовательно и его свойств. Сварочная ванна – это объем жидкого металла, который образуется при соединении жидкого металла одной оплавленной кромки с жидким металлом другой оплавленной кромки в результате нагревания источником энергии. Для получения качественного сварного соединения сварочную ванну в процессе сварки необходимо защищать от атмосферного воздуха (кислород и азот при высоких t активно взаимодействуют с металлом, при этом выгорают углерод и легирующие элементы стали (кремний, марганец и др.), металл азотируется, засоряется оксидами, становится хрупким. Способы защиты сварочной ванны от окружающего воздуха: газовая, шлаковая, газошлаковая (порошковой проволокой), вакуумная, покрытыми электродами, порошкообразными материалами. Основные способы: шлаковая и газовая защита. Часто оба способа применяют совместно, сто позволяет получить высококачественный наплавленный металл сварной шов.

1) покрытыми электродами. Роль защиты выполняет покрытие электрода, которое наносится на электродный стержень, изготовленный из сварочной стальной проволоки. Порошкообразные материалы различного состава смешиваются в определенном соотношении; к сухой смеси добавляется водный раствор жидкого стекла до получения пасты, которая наносится на электродный стержень слоем 1-2 мм. Затем электрод просушивается и прокаливается для закрепления покрытия. В состав покрытия входят минералы, руды, ферросплавы, органические вещества. 2) Защита осуществляется с помощью специального порошка (флюса), который подается в зону сварки из бункера;

Читайте также:  3 фазный трансформатор выпрямитель

в защитных газах. 3) Защита осуществляется с помощью газа (инертного или активного), который, как правило, подается через сопло сварочной горелки; 4)порошковой проволокой. Функцию защиты выполняет предварительно засыпанный в трубчатую сварочную проволоку порошок, который при нагреве разлагается с образованием газа и шлака; 5) в вакууме. Расплавленный металл изолирован от окружающей атмосферы вакуумом, который создается в камере, где осуществляется сварка; 6)шлаковая защита сварочной ванны реализуется при сварке под слоем флюса.

1.сталь 30ХГСА – среднеуглеродистая среднелегированная сталь. Обладает хорошей свариваемостью и повышенными механическими свойствами. Но есть вероятность появления горячих и холодных трещин. Предотвращается защитой дуги от вредных примесей .Холодные трещины предотвращаются применением мягких режимов сварки и предварительным подогревом. При сильных динамических нагрузках возможно хрупкое разрушение соединения, избежать этого можно термообработкой после сварки, что измельчит структуру шва и несколько снизит хрупкость. При контактной сварке необходимо применение мягкого режима сварки и предусмотреть после сварочного импульса тока применение 1 или 2 термообрабатывающих импульсов.

2. исходя из конструктивных особенностей изделия единственным способом его получения является контактная точечная сварка.

3.условие прочности сварного соединения: τ ≤ τ΄,

N-срезающее усилие, кН (53);)-по рекомендации;n– количество точек, работающих на срез, шт (2)

Обозначение соединения: ГОСТ 15878 – 79 – Н1– Кт– 13

4.рекомендованный режим: ток = 12кА, напряжение = 8В, время сварки = 0,4с. Оборудование:МТ-2102 –машина точечная однофазная переменного тока.

5.опорной поверхностью служит станина контактной машины, фиксирующие элементы – это ограничители на станине; прижимное усилие создается сварочными электродами.

Приспособление: ограничители на станине машины.

6.резка заготовок на комбинированных и гильотинных ножницах, фрезеровка контура, кузнечная обработка торца цилиндра, нарезка резьбы. Сборка изделия на станине машины, сварка двух точек. Сверление отверстий. Контроль визуальный и измерительный.

Источник

Введение в дуговую сварку в защитных газах (TIG, MIG/MAG)

При сварке плавлением в защитных газах в качестве источника нагрева используется мощная электрическая дуга. В дуге электрическая энергия преобразуется в тепловую, плотность которой достаточна для локального плавления основного металла. В условиях атмосферы (21%О2+78%N2) зона сварки должна надежно защищаться от насыщения металла шва кислородом и азотом воздуха, которые ухудшают его свойства. Защитные газы, подаваемые через сопло, вытесняют воздух и таким образом защищают сварочную ванну и электрод. Для заполнения зазора между соединяемыми кромками деталей или разделки кромок и регулирования состава металла шва в зону плавления подают присадочный металл или электродную проволоку. В зависимости от физического состояния электрода различают дуговую сварку неплавящимся (см. Сварка в инертных газах вольфрамовым электродом (TIG)) и плавящимся (см. Сварка плавящимся металлическим электродом в защитных газах (МIG/МАG)) электродами.

Защитные газы и их влияние на технологические свойства дуги

В качестве защитных газов при дуговой сварке плавлением ТИГ и МИГ/МАГ применяют инертные газы, активные газы и их смеси. Защитный газ выбирают с учетом способа сварки, свойств свариваемого металла, а также требований, предъявляемых к сварным швам.

Инертными называют газы, не способные к химическим реакциям и практически не растворимые в металлах. Поэтому их целесообразно применять при сварке химически активных металлов и сплавов на их основе (алюминий, алюминиевые и магниевые сплавы, легированные стали различных марок). При сварке ТИГ и МИГ/МАГ используются такие инертные газы как аргон (Ar), гелий (He) и их смеси.

Активными защитными газами называют газы, способные защищать зону сварки от доступа воздуха и вместе с тем химически реагирующие со свариваемым металлом или физически растворяющиеся в нем. При дуговой сварке сталей в качестве защитной среды применяют углекислый газ (СО2). Ввиду химической активности углекислого газа по отношению к вольфраму этот защитный газ используют только при сварке МИГ/МАГ.

К активным газам применяемым при МИГ/МАГ также относятся газовые смеси в состав которых входят аргон (Ar), кислород (О2), азот (N2), водород (H2). Готовые газовые смеси поставляются в баллонах, также они могут быть получены путем смешивания газов составляющих смесь.

Классификация способов сварки в защитных газах приведена на схеме ниже.

Свойства защитных газов

В таблице ниже приведены физические свойства защитных газов.

Газ Плотность

Теплоемкость, Дж/г o С Теплопроводность, вт/м o С Энергия диссоциации, эВ Потенциал ионизации, В Сечение столкновения, м 2
Ar 1,783 0,524 0,19 не диссоц. 15,76 2,5∙10-20
He 0,178 5,242 1,66 не диссоц. 24,58 10∙10-20
CO2 1,977 0,821 0,19 5,5 14,3 25∙10-20
H2 0,090 14,246 2,36 4,48 15,4 130∙10-20
O2 1,429 0,916 5,08 12,5 20∙10-20
N2 1,251 1,039 0,29 7,37 15,5 20∙10-20
Воздух 1,293 1,006

Краткая характеристика защитных газов

Аргон — наиболее часто применяемый инертный газ. Он тяжелее воздуха и не образует с ним взрывчатых смесей. Благодаря низкому потенциалу ионизации этот газ обеспечивает высокую стабильность горения дуги. Однако, в тоже время, низкий потенциал ионизации является причиной и низкого напряжения на дуге, что снижает тепловую мощность дуги. Будучи тяжелее воздуха, аргон обеспечивает хорошую газовую защиту сварочной ванны (но только в нижнем положении сварки). Однако он может накапливаться в слабопроветриваемых помещениях у пола. При этом снижается содержание кислорода в воздухе, что может вызвать кислородную недостаточность и удушье у электросварщика. В местах возможного накопления аргона необходимо контролировать содержание кислорода в воздухе приборами автоматического или ручного действия с устройством для дистанционного отбора проб воздуха. Объемная доля кислорода в воздухе должна быть не менее 19%.

Аргон выпускается согласно ГОСТ 10157-79 двух сортов: высшего и первого. Высший сорт рекомендуется использовать при сварке ответственных металлоконструкций из активных и редких металлов и сплавов, цветных металлов. Аргон первого сорта применяют для сварки сталей и чистого алюминия.

Гелий — бесцветный, неядовитый, негорючий и невзрывоопасный газ. Значительно легче воздуха и аргона, что понижает эффективность защиту сварочной ванны при сварке в нижнем положении, но способствует лучшей защите при сварке в потолочном положении. Гелий используется реже, чем аргон, из-за дефицитности и высокой стоимости. Однако, из-за высокого потенциала ионизации, при одном и том же значении тока дуга в гелии выделяет в 1,5-2 раза больше энергии, чем в аргоне. Это способствует более глубокому проплавлению металла и значительно повышает скорость сварки. Для сварки используется гелий трех сортов: марок А, Б и В (по ТУ 51-689-75). Применяют его в основном при сварке химически чистых и активных материалов и сплавов, а также сплавов на основе алюминия и магния.

Часто используются смеси аргона и гелия, причем оптимальным составом считается смесь, содержащая 35-40% аргона и 60-65% гелия. В смеси в полной мере реализуются преимущества обоих газов: аргон обеспечивает стабильность горения дуги, гелий – высокую степень проплавления.

При сварке меди используется азот, так как он к ней химически нейтрален, т.е. не образует с ней никаких химических соединений и в ней не растворяется.

Активные газы

Углекислый газ (двуокись углерода) — бесцветен, не ядовит, тяжелее воздуха. При нормальных условиях (760 мм рт. ст. и 0°С) плотность углекислого газа в 1,5 раза выше плотности воздуха. Углекислый газ хорошо растворяется в воде. Жидкая углекислота — бесцветная жидкость, плотность которой сильно изменяется с изменением температуры. Вследствие этого она поставляется по массе, а не по объему. При испарении 1 кг жидкой углекислоты в нормальных условиях образуется 509 л углекислого газа.

Двуокись углерода нетоксична и невзрывоопасна. Однако при концентрациях более 5% (92 г/м 3 ) двуокись углерода оказывает вредное влияние на здоровье человека. Так как двуокись углерода в 1,5 раз тяжелее воздуха она может накапливаться в слабопроветриваемых помещениях у пола. При этом снижается объемная доля кислорода в воздухе, что может вызвать удушье. Помещения, где производится сварка с использованием двуокиси углерода, должны быть оборудованы общеобменной приточно-вытяжной вентиляцией.

Основными примесями углекислого газа, отрицательно влияющими на процесс сварки и свойства швов, являются воздух (азот воздуха) и вода. Воздух скапливается над жидкой углекислотой в верхней части баллона, а вода – под углекислотой в нижней части баллона. Повышенное содержание воздуха и водяных паров в углекислоте может при сварке привести к образованию пор в швах, которые чаще всего появляются в начале и конце отбора газа из баллона. Чтобы снизить содержание влаги в поступающем на сварку углекислом газе до безопасного уровня, на его пути устанавливают осушитель. Для улавливания влаги осушитель заполнен хлористым кальцием, силикагелем или другими поглотителями влаги.

При выпуске газа из баллона вследствие эффекта дросселирования и поглощения теплоты при испарении жидкой углекислоты газ значительно охлаждается. При интенсивном отборе газа возможна закупорка редуктора замерзшей влагой, содержащейся в углекислоте, а также сухим льдом. Во избежание этого рекомендуется подогревать выходящий из баллона углекислый газ. Для этого используют электрические подогреватели газа, которые устанавливаются перед редуктором.

Углекислый газ оказывает на металл сварочной ванны окисляющее, а также науглероживающее действие. Из легирующих элементов ванны наиболее сильно окисляются алюминий, титан и цирконий, менее интенсивно — кремний, марганец, хром, ванадий и др.

Кислород — это бесцветный нетоксичный газ без запаха. Является сильным окислителем. Накопление кислорода в воздухе помещений создает опасность возникновения пожаров. Поэтому объемная доля кислорода в рабочих помещениях не должна превышать 23 %. В зависимости от содержания кислорода и примесей технический газообразный кислород изготовляют трех сортов. Содержание кислорода в первом сорте должно быть не менее 99,7 об. %, во втором — не менее 99,5 об. % и в третьем — не менее 99,2 об. %.

В сварочном производстве кислород широко применяют для газовой сварки и резки, а также при дуговой сварке как составную часть защитной газовой смеси. Кислород уменьшает поверхностное натяжение металла, и поэтому с увеличением его содержания в смеси на основе аргона критический ток (перехода крупнокапельного переноса в мелкокапельный, см. Сварка плавящимся металлическим электродом в защитных газах (МIG/МАG)) уменьшается. Обычно содержание кислорода в смеси с аргоном не превышает 2-5%. В такой среде дуга горит стабильно. Перенос металла мелкокапельный с минимальным разбрызгиванием.

Азот — бесцветный газ, без запаха, не горит и не поддерживает горение. В сварочном производстве азот находит ограниченное применение. Азот не растворяется в расплавленной меди и не взаимодействует с ней, и поэтому может быть использован при сварке меди в качестве защитного газа. По отношению к большинству других металлов азот является активным газом, часто вредным, и его концентрацию в зоне плавления стремятся ограничить. Азот также применяется при плазменной резке и как компонент газовой смеси при сварке аустенитной нержавеющей стали.

Водород — не имеет цвета, запаха и является горючим газом. Водород редко используют в в качестве защитного газа. Так как смеси водорода с воздухом или кислородом взрывоопасны, при работе с ним необходимо соблюдать правила пожарной безопасности и специальные правила техники безопасности. При работе с водородом необходимо следить за герметичностью всех соединений, т.к. он образовывает с воздухом взрывчатые смеси в широких пределах.

Смеси защитных газов

Иногда является целесообразным употребление газовых смесей. За счет добавок активных газов к инертным удается повысить устойчивость дуги, увеличить глубину проплавления, улучшить формирование шва, уменьшить разбрызгивание, повысить плотность металла шва, улучшить перенос металла в дуге, повысить производительность сварки. Существенное значение при выборе состава защитного газа имеют экономические соображения.

Смесь аргона и гелия. Газовые смеси гелий-аргон применяются в основном для сварки цветных металлов: алюминий, медь, никелевых и магниевых сплавов, а также химически активных металлов. Оптимальным является соотношение 35 — 40% аргона и 60 — 65% гелия. Так в полной мере реализуются преимущества обоих газов: аргон обеспечивает стабильность дуги, гелий — высокую глубину проплавления.

Смеси аргона с кислородом или углекислым газом. Благодаря добавке окислительных газов обеспечивается существенное снижение поверхностного натяжения жидкого металла расплавляемой электродной проволоки, уменьшение размеров образующихся и отрывающихся от электрода капель. Расширяется диапазон токов при сохранении стабильного ведения процесса сварки. Обеспечивается лучшее формирование металла шва и меньшее разбрызгивание, лучшая форма провара и меньшее излучение дуги, по сравнению со сваркой в чистом аргоне, а также в чистом углекислом газе. При добавлении кислорода наблюдается снижение критического тока, при котором крупнокапельный перенос металла переходит в мелкокапельный.

В таблице ниже приводятся основные характеристики газовых смесей для сварки МИГ/МАГ.

Толщина металла Вид переноса Рекомендуемый защитный газ Достоинства
Углеродистые стали
До 2 мм. С короткими замыканиями Ar + СО2

Легкое управление ванной при сварке во всех пространственных положениях. Хорошее проплавление.
2 – 3 мм Ar + (8…25)% СО2

Более 3 мм СО2
Ar + 25% СО2 Подходит для больших токов и высоких скоростей сварки
Ar + 50% СО2 Применяется при сварке во всех пространственных положениях. Обеспечивает глубокое проплавление. Допускает высокие скорости сварки.
СО2 Глубокое проплавление и высокая скорость сварки (однако, возможны прожоги).
Струйный Ar + (1…8)% СО2 Высокая стабильность дуги. Хорошее сплавление, внешний вид и форма шва. Легкое управление ванной.
Более 2 мм Импульсный Ar + (2…8)% О2

Стабильный управляемый мелкокапельный перенос.
Низко- и высоколегированные стали
До 2,5 мм С короткими замыканиями Ar + (8…20)% СО2 Высокая стабильность дуги. Хорошее сплавление, внешний вид и форма шва. Легкое управление ванной.
Более 2,5 мм Струйный Ar + 2% О2

Снижение вероятности подрезов. Глубокое проплавление и хорошие механические свойства шва.
Импульсный Ar + 2% О2

Стабильный управляемый мелкокапельный перенос.
Нержавеющая сталь, никель, никелевые сплавы
До 2 мм С короткими замыканиями Ar + (2…5)% СО2 Легкое управление ванной. Предупреждает возникновения прожогов.
Более 2 мм Ar + (2…5)% СО2 Низкое содержание СО2 в смеси уменьшает науглероживание, которое может способствовать возникновению межкристаллитной коррозии в некоторых сплавах. Применяется для всех положений сварки.
Струйный Ar + (1…2)% О2

Хорошая стабильность дуги. Низкая вероятность подрезов.
Более 2 мм Импульсный Ar + (1…2)% О2 Стабильный управляемый перенос в широком диапазоне режимов сварки.
Медь, медно-никелевые сплавы
До 3 мм С короткими замыканиями He + 10% Ar

Хорошая стабильность дуги и легко управляемая сварочная ванна.
Более 3 мм Струйный He + Ar

Высокое тепловложение. Сварка в чистом гелии применяется для больших толщин.
Импульсный He или Ar Стабильный управляемый мелкокапельный перенос.
Алюминий
До 12 мм Струйный,

Ar Стабильная дуга и перенос металла. Разбрызгивание незначительное или отсутствует.
Более 12 мм He + (20…50)% Ar

Высокое тепловложение. Хорошее проплавление. Минимальная пористость.
Магний, титан и другие, химически активные металлы
Весь диапазон толщин Струйный Ar Обеспечивается более стабильная дуга, чем в смесях, где преобладает гелий
Ar + (20…70)% He Более высокое тепловложение и сниженная вероятность возникновения пористости.

Присадочные материалы для сварки сталей

Сварка ТИГ и МИГ/МАГ выполняется с использованием сварочной проволоки сплошного сечения, которая в зависимости от марки проволоки изготавливается из стали, химический состав которой (по сертификату о качестве) должен находится в пределах, приведенных в ГОСТ 2246-70. Для сварки ТИГ, как правило, используют сварочные проволоки диаметром от 1,5 до 4 мм (сплошного сечения), а для МИГ/МАГ – от 0,8 до 1,6 мм.

По назначению проволоки можно разделить на те, которые применяются для:

— сварки (наплавки) в качестве электродной плавящейся проволоки (для сварки МИГ/МАГ) или присадочной проволоки (для сварки ТИГ);

— изготовления покрытых электродов (условное обозначение – Э).

Условное обозначение стальной сварочной проволоки состоит из:

— цифры, означающие диаметр проволоки в мм;
— буквенного индекса «Св» (сварочная);
— цифры, следующие за индексом «Св», указывают среднее содержание углерода в сотых долях процента;
— затем идут буквенные обозначения химических элементов, которые содержатся в металле проволоки:

Цифры, следующие за буквенным обозначением химического элемента, указывают на среднее содержание элемента в процентах. В конце пишется номер стандарта. Если после буквы цифра отсутствует, то количество данного элемента не превышает 1%. Буква «А» или «АА» конце маркировки свидетельствует о пониженном содержании серы и фосфора, а значит о высоких механических свойствах. Буква «Ш», «ВД» или «ВИ» означают, что проволока изготовлена из стали, выполненной электрошлаковым или вакуумно-дуговым переплавом или вакуумно-индукционных печах. Пример условного обозначения сварочной проволоки диаметром 3 мм марки Св-08А с неомедненной поверхностью из стали, полученной электрошлаковым переплавом показан на этом рисунке:

Условия поставки

— каждый моток (бухта, катушка, кассета) проволоки должен быть плотно перевязан мягкой проволокой не менее чем в трех местах, равномерно расположенных по периметру мотка;

— мотки проволоки одной партии допускается связывать в бухты (масса одной бухты или мотка не должна превышать 80 кг);

— на каждый моток (бухта, катушка, кассета) проволоки крепят металлическую бирку на которой должны быть указаны:
* наименование или товарный знак предприятия-изготовителя;
* условное обозначение проволоки;
* номер партии;
* клеймо технического контроля, удостоверяющее соответствие проволоки требованиям стандарта.

— сварочная проволока поставляется в сопровождении соответствующих сертификатов, удостоверяющих соответствие проволоки требованиям стандарта. В сертификате указывают:

* товарный знак предприятия-изготовителя;
* условное обозначение проволоки;
* номер партии и плавки;
* состояние проволоки;
* химический состав в процентах;
* содержание α-фазы в пробе в процентах;
* результаты испытаний на растяжение;
* массу проволоки нетто в килограммах.

При утере сертификата проволока может быть использована только после определения ее химического состава.

Катушки со сварочной проволокой

Хранение проволоки

Проволока должна храниться в сухом закрытом помещении, защищающем ее от воздействия атмосферных осадков и почвенной влаги. Условия хранения должны исключать коррозию, загрязнения и механические повреждения.

Подготовка проволоки к работе

При необходимости стальную проволоку очищают пескоструйным аппаратом или травлением в 5%-ном растворе соляной кислоты. Для устранения маслянистых загрязнений применяют растворители – ацетон, уайт-спирит и д.р. также стальную проволоку можно очищать, пропуская ее через специальные механические устройства, а также шлифовальной бумагой до металлического блеска. Непосредственно перед очисткой бухту проволоки рекомендуется отжечь при температуре 150-200°С в течение 1,5-2 часов.

Присадочная проволока для сварки алюминия и его сплавов

При сварке алюминия и его сплавов в основном используют тянутую и прессованную сварочную проволоку из алюминия и алюминиевых сплавов по ГОСТ 7871-75, который предусматривает изготовление проволоки четырнадцати марок. По ГОСТ 7871-75, предусматривается изготовление проволоки диаметром от 0,8 до 12,5 мм. Наиболее широко применяется проволока диаметром 1,5 — 4 мм.

Условия поставки

Поверхность проволоки диаметром 4 мм и менее подвергают химической обработке. После обработки проволока должна иметь блестящую поверхность с параметрами шероховатости Ra≤2,5 мкм по ГОСТ 2789-73. Проволоку с химически обработанной поверхностью наматывают на катушки механическим способом рядами без перегибов и зазоров.

Хранение проволоки

Катушки с проволокой помещают в полиэтиленовый мешок вместе с контрольным пакетом порошка обезвоженного селикагеля-индикатора и герметизируют при относительной влажности воздуха менее 20% в течение 30 мин после химической обработки. Герметичность упаковки оценивают визуально по цвету селикагеля-индикатора. Герметичность следует считать нарушенной, если порошок селикагеля-индикатора имеет розовый цвет.

Герметизированные полиэтиленовый мешки с катушками упаковывают в катонные, пластмассовые или деревянные ящики.

Условное обозначение и области применения сварочной проволоки

В условном обозначении проволоки указывают диаметр проволоки, марку сплава и обозначение стандарта. Пример условного обозначения сварочной проволоки диаметром 2 мм из алюминиевого сплава марки АМц: 2-СвАМц ГОСТ 7871-75

Области применения сварочных материалов при сварке алюминия и его сплавов

Подготовка проволоки к работе

Алюминиевую сварочную проволоку перед сваркой необходимо обрабатывать. Сначала ее обезжиривают, а затем подвергают травлению в 15%-ном растворе едкого натра в течение 5-10 мин при температуре 60-70°С. После этого промывают в холодной воде и сушат 10-30 мин при температуре 300°С.

Подготовленные к сварке материалы сохраняют свои свойства в течение 3-4 дней. Затем на поверхности вновь образуется окисная пленка.

Источник

Оцените статью
toolgir.ru
Adblock
detector